Олег Кулиненков - Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат
- Название:Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат
- Автор:
- Жанр:
- Издательство:FB2Fix365f574e-15a8-102b-9d2a-1f07c3bd69d8
- Год:2007
- Город:Москва
- ISBN:978-9718-0280-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Кулиненков - Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат краткое содержание
Системный подход к факторам, ограничивающим работоспособность спортсмена, позволяет четко выстроить схему фармакологической поддержки его здоровья и значительно повысить спортивный результат.
Предназначается спортивным врачам, тренерам.
Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
После приема внутрь сульбутиамин быстро всасывается из ЖКТ, максимальная концентрация в плазме крови достигается через 1-2 ч. Период полувыведения составляет около 5 ч. Выводится с мочой.
Эффект проявляется с 5-7 дня приема препарата; максимум действия – через 3 недели.
Применяется при снижении выносливости, расстройстве внимания, способности к концентрации; снижении мотиваций, отсутствии уверенности в себе. При лечении перетренированности 1-2-й стадии. Для восстановления циркадианных ритмов (биологических часов) при смене часовых поясов. А также симптоматическом лечении функциональных астенических состояний при гипо– и авитаминозах, при длительных заболеваниях, после оперативных вмешательств.
Противопоказан при повышенной чувствительности к сульбу-тиамину Препарат не назначается детям.
При передозировке препарата может наблюдаться возбужденное состояние с явлениями эйфории и тремора конечностей. Эти симптомы быстро проходят и не требуют специального лечения.
Применяют также седативные средства: ацетиламиноянтарную кислоту, душицу обыкновенную, зверобоя траву, кору белой ивы, липу, мяту перечную, мяту лимонную (мелисса), пассифлору, пион, пустырника траву, хмель.
Иногда для получения более высокого результата в тренировочном процессе или соревновании применяют возбуждающие психостимуляторы: кофеин, гуарану
9. Сократительная способность миокарда
Причиной снижения сократительной способности миокарда является перетренировка, т. е. усиленная физическая нагрузка в течение длительного времени, превышающая физиологические возможности спортсмена.
Снижение сократительной способности миокарда происходит вследствие нарушения метаболических процессов в сердечной мышце.
Для выявления нарушений и контроля деятельности сердца проводятся следующие исследования: ЭКГ, фрактальный анализ сердечного ритма, суточный ЭКГ-мониторинг, функциональные пробы, Эхо-КГ.
Коррекция проводится введением энергетических препаратов и в первую очередь фосфокреатина. Назначаются средства, регулирующие обмен в сердечной мышце и улучшающие микроциркуляцию крови.
Биохимические процессы в тканях сердечной мышцы.Клетки мышечной ткани сердца (кардиомиоциты) совершают наиболее напряженную работу в организме, поэтому их можно считать абсолютными рекордсменами среди клеток других тканей как по количеству вырабатываемой АТФ, так и по объему потребляемого кислорода.
Роль сердца в жизнедеятельности организма крайне ответственна. Сердце выполняет функцию насоса, обеспечивающего поступление крови во все ткани, и эту роль оно должно выполнять круглосуточно в условиях резко меняющихся нагрузок, получая лишь непродолжительные передышки во время каждой диастолы. Обеспечивая максимально высокий кровоток в любом органе в период систолы (когда артериальное давление максимально), сама сердечная мышца оказывается в этот момент в крайне неблагоприятных условиях. В этот период кровоток в ней почти отсутствует. Кровоток в стенке левого желудочка возникает только во время диастолы, когда сердечная мышца расслабляется и больше не сдавливает стенки сосудов. По этой причине общее количество проходящей через сердечную мышцу крови невелико по отношению к объему совершаемой работы, но извлечение кислорода из оксигемоглобина оказывается максимально высоким по сравнению с другими тканями. Этому способствует и необычно высокое содержание митохондрий в кардиомиоцитах. Последние занимают до 35% от объема цитоплазмы.
Как известно, роль основных субстратов для покрытия энергетических потребностей миокарда в норме выполняют жирные кислоты. Они с током крови поступают из печени или жирового депо тканей. В матриксе митохондрий осуществляется (3-окисление этих кислот. Кислоты с короткой углеродной цепью (до 12 атомов углерода) способны проникать из цитоплазмы в матрикс самостоятельно. Однако подавляющее большинство доставляемых с кровью жирных кислот обычно имеют более длинные углеводородные цепи и самостоятельно не могут проникнуть через внутреннюю мембрану митохондрий. В транспорте таких кислот участвует специальный белок карнитин. В межмембранном пространстве митохондрий с участием АТФ он образует ацилкарнитин (эфир транспортируемой кислоты с карнитином), который легко проходит через внутреннюю мембрану митохондрий, а в матриксе данный эфир превращается в ацил-КоА (эфир транспортируемой кислоты с коферментом А), который в результате ряда превращений трансформируется в ацетил-КоА – субстрат для цикла трикарбоновых кислот.
При физической нагрузке в условиях гипоксии снижается приток как кислорода, так и энергетических субстратов. В этом случае деятельность сердца поддерживается за счет использования внутренних энергетических запасов, в первую очередь запасов креатин-фосфата. Имеющихся резервов хватает примерно на 5 мин работы, в течение которых происходит несколько этапов изменений функциональной и биохимической активности кардиомиоцитов, после чего наступает их необратимое повреждение. Общая стратегия в поведении кардиомиоцитов при ишемии миокарда сводится к поэтапному отключению ряда энергопотребляющих систем с целью мобилизации остающихся энергетических ресурсов на выполнение наиболее жизненно важных функций.
Первые изменения при нарушениях в работе сердца происходят в митохондриях. По мере снижения содержания кислорода для сохранения энергетического гомеостаза в клетке на первом этапе наблюдается активация НАДН-зависимого окисления субстрата. Это проявляется в первую очередь в переходе митохондрий из состояния покоя в состояние активного дыхания. Процесс стимулируется за счет увеличения содержания АДФ в клетке. Однако активация комплекса I дыхательной цепи непродолжительна, и из-за дефицита кислорода в митохондриях возрастает содержание
НАДН и убихинола, что становится пусковым механизмом для переключения субстратного участка с комплекса I на комплекс II (см. рис. 3).
По мере снижения содержания АТФ в клетке наблюдается уменьшение АТФ-зависимых реакций, в том числе синтеза ацилкарнитина, что нарушает доставку жирных кислот через внутреннюю мембрану митохондрий. Для исключения субстратного дефицита в клетке происходит перераспределение энергетического потока с жирных кислот на глюкозу. Этому способствует повышение концентрации катехоламинов в крови и активация процесса расщепления гликогена в печени. По мере снижения содержания АТФ и увеличения АМФ в цитоплазме происходит активация ключевых ферментов гликолиза, в первую очередь фосфофруктоки-назы. Запускаемый в цитоплазме процесс гликолиза протекает параллельно с аэробным окислением субстрата в митохондриях, что на время повышает энергопродуцирующие возможности клетки. Однако вынужденное включение гликолиза ведет к негативным последствиям для клетки. В цитоплазме накапливается молочная кислота и НАДН. Снижение рН среды ведет к ингибированию фос-фофруктокиназы, а дефицит НАДН тормозит одну из стадий гликолиза. В результате гликолитическое расщепление глюкозы вскоре прекращается.
Читать дальшеИнтервал:
Закладка: