Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл
Коэффициент детерминации может быть рассчитан не только как квадрат линейного коэффициента парной корреляции или через теорему о разложении общей дисперсии результативной переменной на составляющие, но и через теорему о разложении сумм квадратов результативной переменной.
Теорема. Сумма квадратов разностей между значениями результативной переменной и её средним значением по выборочной совокупности может быть представлена следующим образом:

где

– общая сумма квадратов (Total Sum Square – TSS);

– сумма квадратов остатков (Error Sum Square – ESS);

– сумма квадратов объяснённой регрессии (Regression Sum Square – RSS).
Представим данную теорему в векторной форме:

Общую сумму квадратов можно представить следующим образом:

Если в модель регрессии не включается свободный член β0, то данное разложение также остаётся верным.
Парный коэффициент детерминации может быть рассчитан через теорему о о разложении сумм квадратов результативной переменной по следующим формулам:

или

25. Точечный и интервальный прогнозы для модели парной регрессии
Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных моделей, с помощью которых можно спрогнозировать поведение результативной переменной в зависимости от поведения факторных переменных.
Рассмотрим подробнее процесс прогнозирования для линейной модели парной регрессии.
Точечный прогноз результативной переменной у на основе линейной модели парной регрессии при заданном значении факторной переменной хm будет осуществляться по формуле:
ym=β0+β1xm+εm.
Точечный прогноз результативной переменной ym с доверительной вероятностью γ или (1–а) попадает в интервал прогноза, определяемый как:
ym–t*ω(m)≤ ym≤ ym+t*ω(m),
t – t-критерий Стьюдента, который определяется в зависимости от заданного уровня значимости a и числа степеней свободы (n-2) для линейной модели парной регрессии;
ω(m) – величина ошибки прогноза в точке m.
Для линейной модели парной регрессии величина ошибки прогноза определяется по формуле:

где S2(ε) – несмещённая оценка дисперсии случайной ошибки линейной модели парной регрессии.
Рассмотрим процесс определения величины ошибки прогноза β(m).
Предположим, что на основе выборочных данных была построена линейная модель парной регрессии вида:

Факторная переменная х в данной модели представлена в центрированном виде.
Задача состоит в расчёте прогноза результативной переменной у при заданном значении факторной переменной хm, т. е.

Математическое ожидание результативной переменной у в точке m рассчитывается по формуле:

Дисперсия результативной переменной у в точке m рассчитывается по формуле:

где D(β0) – дисперсия оценки параметра β0 линейной модели парной регрессии, которая рассчитывается по формуле:

Следовательно, точечная оценка прогноза результативной переменной у в точке m имеет нормальный закон распределения с математическим ожиданием

и дисперсией

Если в формулу дисперсии результативной переменной у в точке m вместо дисперсии G2 подставить её выборочную оценку S2, то получим доверительный интервал для прогноза результативной переменной у при заданном значении факторной переменной хm:

где выборочная оценка генеральной дисперсии S2 для линейной модели парной регрессии рассчитывается по формуле:

В этом случае прогнозный интервал можно преобразовать к виду:

что и требовалось доказать.
26. Линейная модель множественной регрессии
Построение модели множественной регрессииявляется одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.
Модель множественной регрессии строится в том случае, если коэффициент множественной корреляции показал наличие связи между исследуемыми переменными.
Общий вид линейной модели множественной регрессии:
yi=β0+β1x1i+…+βmxmi+εi,
где yi – значение i-ой результативной переменной,
Читать дальшеИнтервал:
Закладка: