Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Тут можно читать онлайн Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике - бесплатно ознакомительный отрывок. Жанр: Справочники, издательство Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ответы на экзаменационные билеты по эконометрике
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание

Ответы на экзаменационные билеты по эконометрике - описание и краткое содержание, автор Ангелина Яковлева, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».

Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.

Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.

Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок

Ответы на экзаменационные билеты по эконометрике - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ангелина Яковлева
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0…βm , потому что значения результативной и факторных переменных известны из наблюдений. Для определения минимума функции (1) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (1):

где векторстолбец неизвестных коэффициентов модели регрессии размерности - фото 239

где

векторстолбец неизвестных коэффициентов модели регрессии размерности - фото 240

– вектор-столбец неизвестных коэффициентов модели регрессии размерности ((m+1)*1 );

Общий вид стационарной системы уравнений для функции (1):

Решением стационарной системы уравнений будут МНКоценки неизвестных параметров - фото 241

Решением стационарной системы уравнений будут МНК-оценки неизвестных параметров линейной модели множественной регрессии:

Ответы на экзаменационные билеты по эконометрике - изображение 242

Оценим с помощью метода наименьших квадратов неизвестные параметры линейной модели двухфакторной регрессии:

yi=β0+β1x1i+β2x2i+εi,

где

Ответы на экзаменационные билеты по эконометрике - изображение 243

Чтобы рассчитать оценки неизвестных коэффициентов β0,β1 и β2 данной двухфакторной модели регрессии, необходимо минимизировать функционал F вида:

Для определения экстремума функции нескольких переменных частные производные - фото 244

Для определения экстремума функции нескольких переменных, частные производные по этим переменным приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для модели множественной линейной регрессии с двумя переменными:

В результате элементарных преобразований данной стационарной системы уравнений - фото 245

В результате элементарных преобразований данной стационарной системы уравнений получим систему нормальных уравнений:

Данная система называется системой нормальных уравнений относительно - фото 246

Данная система называется системой нормальных уравнений относительно коэффициентов

для модели регрессии yiβ0β1x1iβ2x2iεi Полученная система нормальных - фото 247

для модели регрессии yi=β0+β1x1i+β2x2i+εi.

Полученная система нормальных уравнений является квадратной, т. к. количество уравнений равняется количеству неизвестных переменных, поэтому коэффициенты

можно рассчитать с помощью метода Крамера или метода Гаусса Рассмотрим - фото 248

можно рассчитать с помощью метода Крамера или метода Гаусса .

Рассмотрим подробнее метод Крамера решения квадратных систем нормальных уравнений.

Единственное решение квадратной системы линейных уравнений определяется по формуле:

где Δ основной определитель квадратной системы линейных уравнений Δ j - фото 249

где Δ – основной определитель квадратной системы линейных уравнений;

Δ j – определитель, полученный из основного определителя путём замены j-го столбца на столбец свободных членов.

При использовании метода Крамера возможно возникновение следующих ситуаций:

1) если основной определитель системы Δ равен нулю и все определители Δj также равны нулю, то данная система имеет бесконечное множество решений;

2) если основной определитель системы Δ равен нулю и хотя бы один из определителей Δj также равен нулю, то система решений не имеет.

28. Линейная модель множественной регрессии стандартизированного масштаба

Помимо классического метода наименьших квадратов для определения неизвестных параметров линейной модели множественной регрессии β0…βm используется метод оценки данных параметров через β -коэффициенты (коэффициенты модели регрессии в стандартных масштабах).

Построение модели множественной регрессиив стандартизированном или нормированном масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.

Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение σ .

Факторная переменная х переводится в стандартизированный масштаб по формуле:

где xij значение переменной xj в i том наблюдении Gxj - фото 250

где xij – значение переменной xj в i -том наблюдении;

G(xj) – среднеквадратическое отклонение факторной переменной xi ;

Результативная переменная у переводится в стандартизированный масштаб по - фото 251

Результативная переменная у переводится в стандартизированный масштаб по формуле:

где Gy среднеквадратическое отклонение результативной переменной у Если - фото 252

где G(y) – среднеквадратическое отклонение результативной переменной у .

Если между исследуемыми переменными в исходном масштабе является линейной, то процесс стандартизации не нарушает этой связи, поэтому стандартизированные переменные будут связаны между собой линейно:

Неизвестные коэффициенты данной функции можно определить с помощью - фото 253

Неизвестные коэффициенты данной функции можно определить с помощью классического метода наименьших квадратов для линейной модели множественной регрессии. В этом случае минимизируется функционал F вида:

В результате минимизации данного функционала получим систему нормальных - фото 254

В результате минимизации данного функционала получим систему нормальных уравнений, переменными в которой будут являться парные коэффициенты корреляции между факторными и результативной переменной. Такой подход основывается на следующем равенстве:

Система нормальных уравнений для стандартизированной модели множественной - фото 255

Система нормальных уравнений для стандартизированной модели множественной регрессии имеет вид:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ангелина Яковлева читать все книги автора по порядку

Ангелина Яковлева - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ответы на экзаменационные билеты по эконометрике отзывы


Отзывы читателей о книге Ответы на экзаменационные билеты по эконометрике, автор: Ангелина Яковлева. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x