Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Тут можно читать онлайн Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике - бесплатно ознакомительный отрывок. Жанр: Справочники, издательство Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ответы на экзаменационные билеты по эконометрике
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание

Ответы на экзаменационные билеты по эконометрике - описание и краткое содержание, автор Ангелина Яковлева, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».

Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.

Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.

Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок

Ответы на экзаменационные билеты по эконометрике - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ангелина Яковлева
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Частный коэффициент корреляции между результативной переменной у и факторной - фото 277

Частный коэффициент корреляции между результативной переменной у и факторной переменной х2 при постоянстве факторных переменных х1 и х3 :

Частный коэффициент корреляции между результативной переменной у и факторной - фото 278

Частный коэффициент корреляции между результативной переменной у и факторной переменной х3 при постоянстве факторных переменных х1 и х1 :

Частные коэффициенты корреляции второго порядка построены с использованием - фото 279

Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.

Следовательно, частный коэффициент корреляции порядка t может быть построен через частный коэффициент корреляции ( t-1 ) порядка. Формулы, построенные через указанную взаимосвязь, называются рекуррентными.

При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции ( n-1 ) порядка рассчитывается по общей формуле:

Частные коэффициенты корреляции вычисленные по рекуррентным формулам - фото 280

Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.

32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации

Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для моделей множественной регрессии, возможно также построение этих показателей с помощью показателя остаточной дисперсии.

В случае линейной модели парной регрессии показатель остаточной дисперсии определяется по формуле:

где это оценка модели парной регрессии с независимой переменной х1 Если в - фото 281

где

картинка 282

– это оценка модели парной регрессии с независимой переменной х1 .

Если в линейную модель парной регрессии включить новую независимую переменную х2 , то можно вычислить показатель остаточной дисперсии для линейной модели регрессии с двумя независимыми переменными:

Ответы на экзаменационные билеты по эконометрике - изображение 283

где

Ответы на экзаменационные билеты по эконометрике - изображение 284

– это оценка модели регрессии с двумя независимыми переменными х1 и х2.

Вне зависимости от качества построенной линейной модели двухфакторной регрессии будет справедливо неравенство вида:

Тогда величину можно охарактеризовать как долю сокращения остаточной дисперсии - фото 285

Тогда величину

можно охарактеризовать как долю сокращения остаточной дисперсии за счёт - фото 286

можно охарактеризовать как долю сокращения остаточной дисперсии за счёт включения в модель регрессии новой независимой переменной х2 . Чем больше величина данного показателя, тем сильнее дополнительная переменная х2 влияет на результативную переменную у и на качество модели регрессии в целом.

Для линейной модели двухфакторной регрессии частный коэффициент корреляции между независимой переменной х2 и результативной переменной у при постоянном значении независимой переменной х1 через показатель остаточной дисперсии определяется по формуле:

Для модели множественной регрессии с n независимыми переменными частный - фото 287

Для модели множественной регрессии с n независимыми переменными частный коэффициент корреляции ( n-1 ) порядка независимой переменной х1 и результативной переменной у при постоянном значении остальных независимых переменных, включённых в модель, определяется по формуле:

Показатель остаточной дисперсии результативной переменной и коэффициент - фото 288

Показатель остаточной дисперсии результативной переменной и коэффициент множественной детерминации связаны отношением:

Если в формуле частного коэффициента корреляции выразить остаточную дисперсию - фото 289

Если в формуле частного коэффициента корреляции выразить остаточную дисперсию результативной переменной с помощью коэффициента множественной детерминации, то для модели множественной регрессии с n независимыми переменными частный коэффициент корреляции в общем виде можно определить по формуле:

Частные коэффициенты корреляции вычисленные через показатель остаточной - фото 290

Частные коэффициенты корреляции, вычисленные через показатель остаточной дисперсии или коэффициент множественной детерминации, изменяются в пределах от нуля до единицы.

Частный коэффициент корреляции для модели множественной регрессии в общем случае характеризует степень зависимости между результативной переменной и одной из факторных переменных при постоянном значении остальных независимых переменных, включённых в модель регрессии.

33. Коэффициент множественной корреляции. Коэффициент множественной детерминации

Если частные коэффициенты корреляции модели множественной регрессии оказались значимыми, т. е. между результативной переменной и факторными модельными переменными действительно существует корреляционная взаимосвязь, то в этом случае построение множественного коэффициента корреляции считается целесообразным.

С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.

Коэффициент множественной корреляции для линейной модели множественной регрессии с n факторными переменными рассчитывается через стандартизированные частные коэффициенты регрессии и парные коэффициенты корреляции по формуле:

Ответы на экзаменационные билеты по эконометрике - изображение 291

где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi

Ответы на экзаменационные билеты по эконометрике - изображение 292

Коэффициент множественной корреляции изменяется в пределах от нуля до единицы. С его помощью нельзя охарактеризовать направление связи между результативной и факторными переменными. Чем ближе значение множественного коэффициента корреляции к единице, тем сильнее взаимосвязь между результативной и независимыми переменными, и наоборот, чем ближе значение множественного коэффициента корреляции к нулю, тем слабее взаимосвязь между результативной и независимыми переменными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ангелина Яковлева читать все книги автора по порядку

Ангелина Яковлева - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ответы на экзаменационные билеты по эконометрике отзывы


Отзывы читателей о книге Ответы на экзаменационные билеты по эконометрике, автор: Ангелина Яковлева. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x