В. Красник - Эксплуатация электрических подстанций и распределительных устройств
- Название:Эксплуатация электрических подстанций и распределительных устройств
- Автор:
- Жанр:
- Издательство:ЭНАС
- Год:2011
- Город:Москва
- ISBN:978-5-4248-0005-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Красник - Эксплуатация электрических подстанций и распределительных устройств краткое содержание
Приведены общие требования к эксплуатации электрических подстанций и распределительных устройств различных уровней напряжения. Рассмотрены вопросы технического обслуживания оборудования подстанций и распределительных устройств, особенности эксплуатации отдельных видов оборудования, порядок и последовательность выполнения оперативных переключений. Даны рекомендации по предупреждению и устранению отказов оборудования и аварийных ситуаций в электрических сетях, по действиям персонала при аварийном отключении оборудования подстанций. Представлен перечень необходимой оперативной документации; изложены принципы организации работы с персоналом энергетических предприятий.
Для административно-технического, оперативного и оперативно-ремонтного персонала энергопредприятий, связанного с организацией и выполнением работ по техническому обслуживанию, ремонту, наладке и испытанию оборудования электрических подстанций и распределительных устройств.
Эксплуатация электрических подстанций и распределительных устройств - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В соответствии с требованиями правил безопасности при эксплуатации электроустановок все виды работ на разрядниках должны производиться с лестниц-стремянок; применение приставных лестниц недопустимо.
Заземлять присоединение разрядника следует стационарными заземлителями, а при их отсутствии — переносными заземлениями, устанавливаемыми вблизи разъединителей.
Ограничители перенапряжений (ОПН) предназначены для защиты электрооборудования электрических сетей переменного тока с изолированной или компенсированной нейтралью от грозовых и коммутационных перенапряжений в соответствии с их вольт-амперными характеристиками и пропускной способностью.
Конструктивно ОПН представляет собой высоконелинейное сопротивление (варистор), заключенное в высокопрочный герметизированный корпус. При возникновении волн перенапряжения сопротивление варисторов изменяется на несколько порядков (от десятков Ом до МОм) с соответствующим возрастанием тока от миллиампер при воздействии рабочего напряжения до тысяч ампер при воздействии волны перенапряжения. Этим объясняется защитное действие ОПН, а высоконелинейная вольтамперная характеристика варисторов позволяет реализовать низкий защитный уровень для всех видов перенапряжений и отказаться от использования искровых промежутков, характерных для традиционных разрядников, со всеми соответствующими преимуществами.
Отсутствие искрового промежутка обеспечивает постоянное подключение ОПН к защищаемому оборудованию.
Область применения ОПН чрезвычайно велика. Они применяются для защиты электрооборудования ПС открытого и закрытого типа, кабельных сетей, ВЛ, генераторов, СК и электродвигателей сетей собственных нужд электростанций и промышленных предприятий, батарей конденсаторов для компенсации реактивной мощности и фазокомпенсирующих устройств, оборудования электро-подвижного состава, устройств электроснабжения и контактной сети переменного и постоянного тока электрифицированных железных дорог, электрооборудования специализированных промышленных предприятий (химической, нефтяной, газовой промышленности и др.).
При отсутствии искровых промежутков через резисторы в нормальном режиме проходит малый ток проводимости, обусловленный напряжением сети.
Длительное прохождение тока проводимости приводит к старению оксидно-цинковой керамики. Поэтому при эксплуатации проверяется величина тока проводимости и не допускается его увеличение до значений, при которых может возникнуть тепловой пробой резисторов и выход ОПН из строя.
Резисторы ОПН для напряжений 35-500 кВ размещают в герметичных одноэлементных фарфоровых покрышках. Высота ОПН примерно равна высоте опорных изоляторов того же класса.
5.5. Обслуживание токоограничивающих реакторов
Токоограничивающий реактор — это электрический аппарат, предназначенный для ограничения ударного тока КЗ, а также для поддержания напряжения на шинах ПС при повреждении за реактором.
Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно. В нормальном режиме на реакторе падение напряжения составляет порядка 3–4 %, что вполне допустимо. В случае КЗ большая часть падения напряжения приходится на реактор. Значение максимального ударного тока КЗ i mрассчитывается по следующей формуле:
i m= 2,54 / (100/Ар %), (5.3)
где I н— номинальный ток сети;
Х р— реактивное сопротивление реактора.
Из формулы (5.3) видно, что чем выше реактивное сопротивление, тем меньше значение максимального ударного тока в сети.
При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то что при этом для поддержания такого же значения индуктивности (реактивность прямо пропорциональна индуктивному сопротивлению катушки) их приходится делать больших размеров и массы.
Различают бетонные и масляные реакторы.
Бетонные реакторы, как правило, внутренней установки используются на напряжениях до 35 кВ. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. Бетон выпускается с высокими механическими свойствами. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение. Фазные катушки располагают так, чтобы при собранном реакторе поля катушек были расположены встречно, что необходимо для преодоления продольных динамических усилий при КЗ.
Масляные реакторы применяются в сетях напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом. Масло служит одновременно и изолирующей, и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны или магнитные шунты.
Электромагнитный экран — это расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках возникает встречное электромагнитное поле, которое компенсирует основное поле.
Магнитный шунт — это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшим сопротивления стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.
Для предотвращения взрывов, связанных с перегревом масла в баке, все реакторы на напряжение 500 кВ и выше в соответствии с действующими ПУЭ должны быть оборудованы газовой защитой.
При периодических осмотрах, а также при осмотрах после КЗ проверяют отсутствие повреждений обмоток и токопроводящих шин, бетонных стоек, витковой и фарфоровой изоляции. Особое внимание обращается на качество соединений контактных пластин с обмотками, на отсутствие нагрева в местах присоединения шин к реактору.
Периодически проверяется исправность вентиляции помещений, поскольку реакторы внутренней установки изготовляются для работы в сухих, хорошо вентилируемых помещениях. Недостаточная по объему или неправильно направленная вентиляция может привести к перегреву окружающего воздуха и обмотки реактора.
Читать дальшеИнтервал:
Закладка: