Сергей Доронин - Квантовая магия

Тут можно читать онлайн Сергей Доронин - Квантовая магия - бесплатно ознакомительный отрывок. Жанр: Эзотерика, издательство Весь, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая магия
  • Автор:
  • Жанр:
  • Издательство:
    Весь
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9573-0844-7
  • Рейтинг:
    3.1/5. Голосов: 201
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Доронин - Квантовая магия краткое содержание

Квантовая магия - описание и краткое содержание, автор Сергей Доронин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.

Квантовая магия - читать онлайн бесплатно ознакомительный отрывок

Квантовая магия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Доронин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В простейшей квантовомеханическоймодели из элементарных магнитиков состояние системы определяется заданием ориентации (вверх или вниз) каждого из них. И энергия системы определяется достаточно просто, исходя из ее состояния. Энергия выражается через следующую разность, которая в данном случае называется спиновым избытком:

(число спинов вверх) — (число спинов вниз) = спиновыйизбыток.

Например, состояние, в котором число спинов «вверх» равно числу спинов «вниз», имеет нулевую энергию (равномерное распределение энергии). Два состояния, в котором все спины направлены вверх (вниз), имеют максимальную энергию из всех возможных для данной системы.

Таким образом, энергия системы — это величина, которая характеризует отклонение системы от равновесного состояния. Отсюда — связь с классической физикой и всевозможными определениями энергии, которые в ней используются. Все они в основе своей содержат квантовомеханическоеопределение энергии и с классической точки зрения характеризуют работу, которую может совершить система при ее переходе к равновесному состоянию. Здесь мы видим естественный переход к понятию силы (градиента энергии), который совершает эту работу.

Отмечу, что вся классическая термодинамика выводится из простейшей квантовомеханическоймодели невзаимодействующих спинов, и остается возможность дальнейшего совершенствования этой модели. Очевидным становится то основное упрощение, следствием которого являются законы классической термодинамики. Поскольку не учитываются взаимодействия между частицами, из рассмотрения убираются несепарабельные состояния и нелокальные квантовые корреляции.

Курс статистической термодинамики Киттеляхорош еще и тем, что он на конкретном примере показывает высокую эффективность подхода квантовой механики к объяснению физических процессов в окружающей реальности. Замечу — любых процессов, в том числе макроскопических, поскольку в основе квантовомеханическойточки зрения «лежит понятие состояний всей системы, независимо от того, велика она или мала».

Задать энергию как функцию состояния можно и без привязки к физике, а, скажем, для характеристики информационных процессов. К примеру, выразить ее через аналог «спинового избытка» (удобнее брать удвоенную разность между числом нулей и единиц в векторе состояния в двоичном базисе). Можно еще проще — как число единиц в векторе состояния. В частности, состояние из всех нулей |000…00ñ принять за минимальное значение энергии, тогда ортогональное ему состояние из всех единиц — состояние с максимальным значением энергии. А энергию для всех промежуточных состояний определять числом единиц, то есть энергия состояния |01100ñ равна 2, для состояния |10110ñ равна 3 и т. д. Здесь можно подумать о нормировке, о том, как удобнее ввести энергию, но суть остается — нужно как-то связать число нулей и единиц в векторе состояний с количественным значением энергии.

Такое определение энергии имеет и некоторый физический смысл: например, в случае передачи информации по каналу с шумом для «переворота» (искажения) одного символа требуетсяменьше энергии внешнего воздействия (шума), чем для «переворота» двух и более символов.

После этого можно говорить о градиенте энергии. Так, если есть два локальных объекта в исходном состоянии: |000…00ñ (один из них) и |111…11ñ — другой (каждое из этих состояний сепарабельное), и они приходят во взаимодействие, то градиент энергии между ними будет максимальный (перепад энергии максимально возможный, так как одна подсистема находится в состоянии с минимальной энергией, а другая — с максимально возможной энергией).Возникает поток энергии, который приводит всю систему в равновесие, и она перейдет, например, в суперпозиционное состояние картинка 1(|000…00ñ + |111…11ñ) — несепарабельное, максимально запутанное и нелокальное. В квантовой теории оно называется кэт-состояниев память о шредингеровскомкоте, который находится в состоянии «ни жив, ни мертв».

Несколько слов об энтропии. Энтропия и энергия в физике неразрывно связаны друг с другом. При формальном определении энергии, скажем, как числа единиц в двоичном базисе можно эту связь установить для любых состояний (не только физических).

Энтропия по своему фундаментальному определению (в терминах состояний) — это логарифм от числа допустимых состояний системы.

Как говорит Киттель: «Это определение ошеломляет своей простотой: энтропия есть логарифм числа допустимых состояний системы. <���…> Говорят, что энтропия служит мерой беспорядка в системе. Такое утверждение точно соответствует определению. Чем больше у системы допустимых состояний, тем больше энтропия».

Как известно, статистическая физика исходит из следующего основного предположения (иногда это утверждение называют основной гипотезой статистической физики): замкнутая система с равной вероятностью может находиться в любом допустимом для нее состоянии. Состояние считается допустимым, если оно удовлетворяет наложенным на систему ограничениям. Основные ограничения — это ограничения по энергии и по числу подсистем (определяется размерностью гильбертова пространства).

Число допустимых состояний, в свою очередь, зависит от энергии. Поясню этот момент на примере системы из 10 двухуровневых подсистем (в двоичном базисе). Для состояния с максимальной энергией, то есть 1111111111, есть только одно допустимое состояние. Для состояния с чуть меньшей энергией, например, с одним нулем — уже 10 допустимых состояний, скажем, 1101111111, то есть 10 различных вариантов размещения 0. Это степень вырождения для данного значения энергии. Для состояния с двумя нулями число допустимых состояний (степень вырождения) равно 45 и т. д. Максимальное число допустимых состояний (252) имеет место для состояний из 5 единиц и 5 нулей, то есть состояний типа 1101011000. Здесь работает комбинаторика, и в целом мы имеем гауссово распределение для числа допустимых состояний.

Таким образом, энтропия (логарифм от числа допустимых состояний) [71] Общепринятое термодинамическое определение энтропии отличается только наличием множителя k b — постоянной Больцмана, равной 1,381 · 10 –16 эрг/К. является функцией энергии (числа единиц в нашем случае), то есть:

σ ( m ) = ln g ( m ),

где m — энергия (число единичек); g ( m ) — степень вырождения для данного значения энергии (число допустимых состояний, соответствующих этой энергии).

Минимальная энтропия будет равна нулю (одно состояние) для состояний 1111111111 и 0000000000 (для состояний с максимальной и минимальной энергией), а максимальное значение энтропии в нашем примере равно 5,53 ( ln252).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Доронин читать все книги автора по порядку

Сергей Доронин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая магия отзывы


Отзывы читателей о книге Квантовая магия, автор: Сергей Доронин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x