Сергей Доронин - Квантовая магия
- Название:Квантовая магия
- Автор:
- Жанр:
- Издательство:Весь
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9573-0844-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Доронин - Квантовая магия краткое содержание
Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.
Квантовая магия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из нелокальных чистых состояний можно выделить те, что соответствуют точкам экватора. Эти состояния в некотором отношении противоположны локальным состояниям «на полюсе». Чтобы немного прояснить этот момент, вспомним, что состояние замкнутой системы определяется ее внутренними процессами. И внутренняя эволюция любой многосоставной системы будет, по аналогии с простейшим случаем, соответствовать движению конечной точки вектора состояния по поверхности многомерной сферы. Для простоты можно положить, что точка движется вдоль меридиана — от одного полюса к другому, проходя через экватор. При этом на полюсах вся система в целом имеет определенное макросостояние(«вверх» или «вниз»), которое постепенно «размывается изнутри». А на экваторе система приходит в состояние ни «вверх», ни «вниз» (вероятность обоих состояний одинакова, имеет место когерентная суперпозиция состояний), то есть все внутренние части системы находятся в максимально запутанном нелокальном состоянии. При приближении точки, например, к верхнему полюсу, система вновь начинает приобретать определенное макросостояние. Запутанность между ее подсистемами уменьшается, они постепенно локализуются (вероятность макросостояния«вниз» снижается), и на полюсе все подсистемы становятся замкнутыми, а система в целом переходит в макросостояние«вверх».
Это наглядное геометрическое представление способно пояснить такое понятие из индуизма, как «сутки Брахмы». Движение от полюса к экватору — Пралайя— это период растворения классической реальности (переход в нелокальное состояние). Манвантара— период проявления локальных объектов — движение от экватора к полюсу.
Мы рассмотрели случай замкнутой системы (чистого состояния), когда точка, соответствующая лучу двумерного гильбертова пространства, движется по поверхности сферы единичного радиуса в обычном Евклидовом пространстве.
Что будет происходить, когда открытая система взаимодействует с окружением? Открытая система описывается матрицей плотности, и наша точка «уходит» со сферы, смещаясь во внутреннюю часть шара. Насколько глубоко она зайдет «внутрь», зависит от интенсивности взаимодействия. Вместо сферы чистого состояния мы получаем некий эллипсоид — типа «кокона» или «яйца».
Вначале рассмотрим одиночный случайвзаимодействия (измерения) с внешним классическим измерительным прибором (наблюдателем). В этом случае точка смещается в плоскости, перпендикулярной оси Z и оказывается на самой оси, попадая на классический домен (см. рис. 3). Классический прибор (наблюдатель) фиксирует одно из возможных значений («вверх» или «вниз») с соответствующей вероятностью в зависимости от того, где находилась точка, через которую проведена плоскость сечения. Это предельный случай декогеренции.
Данный пример дает возможность наглядно представить и более общий процесс декогеренции. Если внешний наблюдатель уже не классический (менее «плотный») и взаимодействует с меньшей интенсивностью, то наша точка не доходит до оси Z и остается в некотором промежуточном положении, которое зависит от интенсивности взаимодействия (плотности энергии «наблюдателя»). Чем слабее внешнее воздействие, тем меньше точка смещается к оси Z от первоначального ее положения на поверхности сферы.
Точнее говоря, точки при этом не остаются неподвижными — они вращаются вокруг оси Z с частотами, которые определяются разностью между собственными значениями гамильтониана взаимодействия.
Если внешних наблюдателей много (окружение), и они имеют различную «плотность» (различаются по энергии взаимодействия), то все они совместными усилиями в результате декогеренции смещают точку на разные расстояния. Все эти смещенные точки, вращаясь, «вырисовывают» на сфере Блоха диск. Это своеобразная «плоскость восприятия», в которой окружение «видит» данный объект, и, следовательно, сам объект «видит» окружение на соответствующем уровне энергии.
Таким образом, классический домен (вся наша классическая реальность) — это точки на оси Z на рисунке 3, то есть он составляет незначительную часть совокупной квантовой реальности (квантового домена). При этом любой проявленный (декогерированный) классический объект материального мира (точка на оси Z ) окружен квантовым ореолом или «квантовым гало», как результат частичной и неполной декогеренции. Чем дальше от оси, тем больше квантовая нелокальность, тем слабее « проявленность» объекта.
Зурекпишет, что строгий запрет на существование таких состояний снимается. Можно количественно измерять степень неклассичностисостояний, определяя их расстояния от классического домена. Классические проявленные состояния будут тогда окружены «квантовым гало», и его необычные квантовые свойства (типа « шредингеровскогокота») будут возрастать при удалении от оси Z к поверхности сферы.
По словам Зурека, такой простой пример декогеренции на сфере Блоха позволяет геометрически наглядно представить три основных момента декогеренции. На схеме можно увидеть:
( i) классические чистые состояния (два состояния «вверх» и «вниз» в нашем случае) — точки полюсов;
(ii) классический домен, состоящий из всех целевых состояний и их смесей, на рисунке это отрезок [—1, +1] на оси Z ;
( iii) квантовый домен — остальная часть объема сферы Блоха, который соответствует матрицам плотности более общеговида.
Наглядное представление декомпозиции гильбертова пространства, вызываемой декогеренцией, возможно только в данном простом случае. Но и в общем случае, говорит Зурек, когда декогеренция ведет к классичности, это «проявление» имеет сходные черты, и ожидается выполнение пунктов, подобных пунктам ( i) — ( iii).
Теперь подытожим вышесказанное и попытаемся более четко сформулировать основные выводы, которые следуют из квантовой теории в отношении Реальности.
Понять, что происходит при эволюции Универсума, помогают общие фундаментальные принципы квантовой теории и простые геометрические модели типа сферы Блоха. Из условия изолированности Универсума сразу же следует вывод о его нелокальности и когерентном состоянии, отсюда и название — «нелокальный источник реальности». На сфере Блоха это видно наглядно — все точки на поверхности шара (то есть на сфере), которые соответствуют замкнутой системе, являются нелокальными состояниями (с разной мерой запутанности между внутренними составными частями системы — отсюда различные классические вероятности). Максимальная запутанность (полная внутренняя нелокальность) — это точки экватора на сфере Блоха.
Замкнутая система может быть полностью локальна только в двух точках на сфере — точках полюса, но в них система сепарабельна — взаимодействия между ее подсистемами нет. Таким образом, если есть взаимодействие между составными частями замкнутой системы — она всегда будет нелокальна, а ее подсистемы будут квантово запутаны между собой. Этот вывод в той или иной формулировке часто встречается в научных публикациях, и ранее я приводил соответствующие цитаты (см. главу 2, раздел 2.5): в случае чистых состояний любые корреляции являются квантовыми — и это строгий результат, следующий из основ квантовой теории. Такое состояние Универсума я иногда называю ЧЗСУ (чистое запутанное состояние Универсума).
Читать дальшеИнтервал:
Закладка: