Сергей Доронин - Квантовая магия

Тут можно читать онлайн Сергей Доронин - Квантовая магия - бесплатно ознакомительный отрывок. Жанр: Эзотерика, издательство Весь, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая магия
  • Автор:
  • Жанр:
  • Издательство:
    Весь
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9573-0844-7
  • Рейтинг:
    3.1/5. Голосов: 201
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Доронин - Квантовая магия краткое содержание

Квантовая магия - описание и краткое содержание, автор Сергей Доронин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.

Квантовая магия - читать онлайн бесплатно ознакомительный отрывок

Квантовая магия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Доронин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Необходимо обеспечить условие для приготовления входного регистра в исходном основном базисном состоянии. То есть должна существовать достаточно легко реализуемая возможность инициализации ( зануления) регистра и перевода кубитов в чистое состояние. Точнее, в псевдочистое, поскольку, как нам уже известно, никто пока не знает, как реализовать чистое состояние. Вполне вероятно, что здесь работает гипотеза об определяющей роли градиента энергии, реализуемого в системе (более подробно об этом см. в главе 5). Кстати, частный случай этого общего принципа как раз и используется в настоящее время и считается пока наилучшим — это метод Кори (предложен в 1996–1997 годы). Другие его названия — метод пространственного усреднения и метод градиентного поля.

Необходимо ограничить процесс декогеренции квантовых состояний, обусловленный взаимодействием системы кубитов с окружающей средой, что приводит к разрушению суперпозиций квантовых состояний и делает невозможным выполнение квантовых алгоритмов. Время декогеренции должно, по крайней мере, в 10 4раз превышать время выполнения основных квантовых операций (время такта). Для этого система кубитов должна достаточно слабо взаимодействовать с окружением.

Необходимо обеспечить за время такта выполнение требуемой совокупности квантовых логических операций, определяющей унитарное преобразование. Дело в том, что любую математическую операцию, как арифметическую (сложение, вычитание, умножение, деление и т. д.), так и логическую («и», «или» и т. д.), можно свести к ограниченному числу логических операций.Из них основные всего лишь три: операция CNOT (контролируемое НЕ, ControlledNOT, аналог исключающего ИЛИ в классических компьютерах) — это двухкубитнаяоперация, а также две однокубитныеоперации — операция НЕ и преобразование Адамара (см. предыдущую главу, выражение 3.13). Умея выполнять эти операции над кубитами, можно реализовать любую программу для квантового компьютера.

Необходимо уметь воздействовать на каждый кубитпо отдельности, а также иметь возможность измерить состояния квантовой системы на выходе, то есть при выводе результата. Одним словом, выбор физической основы квантового процессора должен быть согласован с достаточно простым устройством ввода-вывода информации.

В настоящее время ведутся работы над следующими основными вариантами физической основы (элементной базы) квантового процессора.

● Использование в качестве квантового процессора пробирки с органической жидкостью , где кубитами являются ядра отдельных атомов со спинами 1/2, связанные косвенными спин-спиновыми взаимодействиями. Органическая жидкость в пробирке ведет себя как одна молекула этого вещества, точнее, все молекулы ведут себя одинаково в тех взаимодействиях, которые нам необходимы. Таким образомпоявляется возможность применить к макроскопическим объемам жидкости отработанные методики и техники ядерного магнитного резонанса (ЯМР). Индивидуальное обращение котдельным кубитам заменяется одновременным обращением к соответствующим кубитам одновременно во всех молекулах большого ансамбля. Логические операции над кубитами (с помощью радиочастотных импульсов) и вывод результата осуществляется стандартными методами ЯМР. Компьютер такого рода получил название ансамблевого ( bulk-ensemble quantum computer) квантового компьютера. Он может работать и при комнатной температуре. Время декогеренции квантовых состояний ядерных спинов в жидкости достаточно велико и может составлять несколько секунд. Именно при использовании этой элементной базы в настоящее время достигнут самый значительный успех в практической реализации квантовых вычислений. Лидером здесь является группа Исаака Чуанга. В 1998 году впервые в мире ею создан 2-кубитный квантовый компьютер; в 1999 году — 3-кубитный, который с использованием алгоритма Гроверасовершал поиск в базе данных; в 2000 году — 5-кубитный. Последнее достижение этой группы — 7-кубитный квантовый компьютер [103]. 7 кубитов оказалось достаточно, чтобы на практике осуществить реализацию квантового алгоритма П. Шорапо разложению на простые множители числа 15, были получены 3 и 5.

На первый взгляд, достижения скромные, однако не стоит забывать, что N кубитов заменяет 2 N обычных битов, то есть зависимость здесь экспоненциальная — добавление одного кубита увеличивает возможности квантового компьютера в два раза. Если 7 кубитов — это всего лишь 128 классических битов, то, например, 30 кубитов — уже 10 9классических единиц информации, а 100 кубитов заменят 10 30обычных битов — просто гигантское число. На сайте Los Alamos National Laboratory(LANL) [104]можно прочитать, что 30-кубитный квантовый компьютер был бы, по грубым прикидкам, эквивалентен обычному компьютеру, выполняющему 10 триллионов операций в секунду. Такое быстродействие сопоставимо с производительностью самых мощных суперкомпьютеров, состоящих из тысяч процессоров.

Однако, несмотря на все преимущества квантового процессора в «пробирке», его потенциал практически исчерпан, поскольку измеряемый на выходе сигнал экспоненциально убывает с ростом числа кубитов. Оценки показывают, что предельным значением, когда еще можно что-то измерить, является 10–13 кубитов. Но, кроме этого технического, существуют и чисто физические ограничения. Дело в том, что косвенные спин-спиновые взаимодействия, необходимые для организации основных логических операций, сами по себе очень слабые. В результате время выполнения логических операций оказывается чрезвычайно большим, а создаваемый компьютер имеет небольшое быстродействие. В этом случае более перспективными оказываются твердотельные квантовые компьютеры на основе ЯМР, поскольку диполь-дипольныевзаимодействия ядерных спинов внесколько тысячраз превосходят косвенные спин-спиновые взаимодействия. Мы рассмотрим этот случай чуть ниже. А пока назовем другие экспериментальные реализации квантового компьютера.

● Использование в качестве кубитов уровней энерг ии ионов, захваченных ионными ловушками , создаваемыми в вакууме определенной конфигурацией электрического поля в условиях их лазерного охлаждения до микрокельвиновыхтемператур. Взаимодействие между заряженными ионами в одномерной цепочке этих ловушек осуществляется посредством возбуждения их коллективного движения, а индивидуальное управление ими — с помощью лазеров инфракрасного диапазона. Первый прототип квантового компьютера, соответствующий этим принципам, был предложен австрийскими физиками И. Циракоми П. Цоллеромв 1995 году. В настоящее время интенсивные экспериментальные работы ведутся в LANL и в Национальном Институте стандартов и технологии ( National Institute of Standards and Technology— NIST) в США. Преимущество такого подхода заключается в сравнительно простом индивидуальном управлении отдельнымикубитами. Основными же недостатками этого типа квантовых компьютеров являются необходимость создания сверхнизких температур, обеспечение устойчивости состояний ионов в цепочке, а также ограниченность возможного числа кубитов значением N < 40. На сегодняшний день установлен практически полный контроль над квантовым состоянием единичного иона в ловушке, и внимание экспериментаторов переключилось на системы из нескольких ионов с хорошо контролируемыми взаимодействиями между ними. Действие квантовых логических схем основано в данном случае на квантовой запутанности внутренних степеней свободы ионов (электронные возбуждения) и коллективного движения (колебательного возбуждения) запертых в ловушке ионов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Доронин читать все книги автора по порядку

Сергей Доронин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая магия отзывы


Отзывы читателей о книге Квантовая магия, автор: Сергей Доронин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x