Сергей Доронин - Квантовая магия

Тут можно читать онлайн Сергей Доронин - Квантовая магия - бесплатно ознакомительный отрывок. Жанр: Эзотерика, издательство Весь, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовая магия
  • Автор:
  • Жанр:
  • Издательство:
    Весь
  • Год:
    2007
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9573-0844-7
  • Рейтинг:
    3.1/5. Голосов: 201
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Доронин - Квантовая магия краткое содержание

Квантовая магия - описание и краткое содержание, автор Сергей Доронин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.

Квантовая магия - читать онлайн бесплатно ознакомительный отрывок

Квантовая магия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Доронин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следовательно, квантовая статистика позволяет, в принципе , исходя из одной только энергетической характеристики объекта , вычислять среднее значение любой величины, характеризующей систему, а также вероятности различных значений этих величин.

Одно из основных условий применимости методов квантовой статистики — наличие у макроскопического объекта «почти непрерывного» энергетического спектра. Этому условию удовлетворяют не только тела, описываемые системой взаимодействующих частиц, но и объекты, моделируемые системой квантовых полей. При этом появляется возможность описать не только внутренние свойства макроскопических объектов (иными словами, ограничиться решением предыдущей задачи с частицами в виде локальных полей), но и взаимодействие отдельных тел, поскольку каждое из них будет обладать нелокальными макроскопическими характеристиками, связанными с наличием дальнодействующих полей.

Чтобы сделать очередной шаг, связывающий статистическую физику и квантовую теорию поля, воспользуемся понятием статистического равновесия. Если в замкнутой макроскопической системе среднее значение полной энергии произвольной подсистемы и самой системы в целом имеют минимальное значение, то говорят, что она находится в состоянии статистического равновесия. Это утверждение является следствием того, что замкнутая система при достаточно большом времени наблюдения находится в состоянии, при котором макроскопические физические величины с большой относительной точностью равны своим средним значениям. Если в начальный момент времени система не находилась в состоянии статистического равновесия (например, испытывала внешнее воздействие, после чего вновь стала замкнутой), то в дальнейшем она должна перейти в состояние равновесия. Промежуток времени, в течение которого происходит переход к статистическому равновесию, называется временем релаксации. Под достаточно большим временем наблюдения подразумеваются большие, по сравнению со временем релаксации, времена.

Данное определение статистического равновесия системы (наличия минимума энергии) устанавливает непосредственную связь между статистической физикой и квантовой теорией поля, поскольку дает возможность воспользоваться основополагающим принципом, лежащим в основе теории поля (в том числе и квантового). Это так называемый принцип наименьшего действия ( лагранжевформализм) [154]. Он заключается в том, что произвольному объекту ставится в соответствие интеграл D , называемый действием, который имеет минимум, и вариация которого δ D , следовательно, равна нулю. Важность этого понятия обусловлена тем, что действие D определяет физически наблюдаемые свойства системы. Исходя из этого принципа, получают все основные уравнения, характеризующие систему. Например, для системы, состоящей из объекта и внешнего поля, при нахождении уравнения поля считается заданным движение объекта в этом поле, и варьируются потенциалы поля, играющие здесь роль «координат» системы. При нахождении уравнения движения объекта считается заданным поле и варьируется траектория объекта.

Действие обычно записывают в виде интеграла по времени от функции Лагранжа L ( t ). Функция Лагранжа является функцией времени, зависит от динамических переменных системы и в механике записывается в виде суммы по всем составным частям системы. В случае непрерывной системы типа волнового поля эта сумма заменяется пространственным интегралом от плотности функции Лагранжа L' ( x ), которая называется лагранжианом(под пространством здесь понимается пространство событий Минковского— четырехмерное пространство-время [155]с элементом объема dx = dx 0 dx 1 dx 2 dx 3= с dtd x ). Поэтому в теории поля (как классической, так и квантовой) основную роль играет не функция Лагранжа L ( t ), а лагранжиан L' ( x ).

Таким образом, есть все основания применить отмеченный выше формализм к нашей модели, которая описывает макроскопические тела в виде совокупности квантовых полей.

Перейдем теперь к более детальному построению модели. Разобьем весь энергетический спектр рассматриваемой системы W n на интервалы в соответствии с различными видами энергий взаимодействия, указанными выше. Они могут и «накладываться» друг на друга, если это энергии одного порядка (например, в жидкостях энергия взаимодействия молекул и энергия их колебательного движения примерно равны). Выделенные интервалы представляют собой полевые объекты, отличающиесяпрежде всего средним значением плотности энергии, обычно они отделены друг от друга так называемыми энергетическими щелями. Полная внутренняя энергия системы в этом случае будет равна сумме энергий выделенных слоев, а также энергий их взаимодействия между собой. Таким образом, произвольный объект мы моделируем в виде совокупности совмещенных энергетических структур с качественно различными физическими характеристиками. Каждый из выделенных энергетических интервалов по-прежнему является «почти непрерывным», имеет равновесное состояние с минимумом энергии, и к каждому из них можно применить формализм, о котором говорилось выше. Теперь появляется возможность рассчитать значения физических величин и вывести уравнения движения не только для системы в целом, но и для каждой ее составляющей энергетической структуры в отдельности. Следовательно, мы можем описать не имеющие предметного воплощения объекты из менее плотных энергетических составляющих. Можно также описывать взаимодействие этих тонких квантовых структур и учитывать их влияние друг на друга.

Во избежание недопонимания напомню, что мы исходим из непрерывного описания реальности, то есть исходным здесь является понятие поля, в котором нет никаких частиц. В этом случае различные энергии взаимодействия нельзя рассматривать только как результат взаимодействия частиц между собой и делать вывод, что без частиц эти энергетические структуры не существуют. Согласно квантовой теории поля, сами частицы появляются как один из возможных результатов взаимодействия непрерывных энергетических структур с измерительным прибором (в частности, с наблюдателем). При этом опровергается распространенное предубеждение, что различные энергии взаимодействия возникают лишь при объединении отдельных частиц в единую систему. Частицы как первичные и самодостаточныеэлементы реальности не существуют — это вторичные структуры, которые «проявляются» из нелокального состояния в результате декогеренции окружением. Термин «энергия взаимодействия» здесь не совсем удачен, но я использую его, чтобы было понятно, о чем идет речь, и чтобы согласовать предложенный подход с общепринятым описанием предметного мира.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Доронин читать все книги автора по порядку

Сергей Доронин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая магия отзывы


Отзывы читателей о книге Квантовая магия, автор: Сергей Доронин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x