Евгений Поляков - Но кому уподоблю род сей?
- Название:Но кому уподоблю род сей?
- Автор:
- Жанр:
- Издательство:ДЕАН, Ферт
- Год:1993
- Город:Санкт Петербург
- ISBN:5-85116-022-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Поляков - Но кому уподоблю род сей? краткое содержание
Книга Евгения Полякова должна стать настольной у любого, кто намеревается всерьёз изучать Библию. Не удивительно, что она перевернёт традиционные представления о Библии, христианстве и вере. Настоящее знание зачастую сокрыто от любопытствующих, и приходится затрачивать определённые усилия, чтобы с ним ознакомиться. Как и труды Кардека, работа Полякова не известна широкой публике, что только прибавляет ей ценности в свете вышеизложенного.
Но кому уподоблю род сей? - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Примечание к главе XI
«КТО ИМЕЕТ УМ, СОЧТИ ЧИСЛО»
Многие исследователи со времен предшествовавших даже Пифагору пытаются — и некоторые из них не без кажущегося успеха — развивать основанные на десятичной системе нумерологические построения. При этом, по собственному произволу складывая то числа, то значащие цифры чисел, умножая их и деля друг на друга, возводя в степень и извлекая корни, они находят определенные закономерности, основанные на выдающихся цифрах и числах, и далее делают вывод, что на них построен мир.
Однако такие исследователи не хотят или не могут понять того простого факта, что закономерности, открытые ими, характеризуют вовсе не мироздание, но всего-навсего десятичную систему счисления, выйти за рамки которой им не позволяет отсутствие образования и фантазии. Если же не связывать себя гордиевым узлом десяти, включая ноль, знаков, знакомых всем со школы, но попытаться выделить подобные закономерности, например, из восьмеричной (или еще какой-нибудь) системы, то, безусловно и жестко присутствуя там, такие закономерности окажутся совсем иными. Соответственно и бросающиеся в глаза числа и цифры будут другими. Что же построено на них? Неужто ничего? или какой-то другой мир? Да нет, мир-то тот же самый, но в первую очередь на этих закономерностях построена соответствующая система счисления...
Одним из применяемых нами методов отрицания лжеучений — и это полностью применимо к означенным нумерологиям — является способ, основанный на доведении мнения оппонента до логического абсурда. Как вам понравится, например, такое открытие: если складывать до тех пор, пока это возможно (а так поступают все без исключения нумерологи), значащие цифры числа, записанного не в десятичной, а в двоичной системе счисления и обозначающего любой стих Библии, предварительно приписав каждой букве соответствующее числовое значение, то мы во всех случаях неизменно получим единицу . Грандиозно, не правда ли? Сей грандиозности только добавляет тот факт, что данное правило справедливо для всего Вавилонского смешения языков мира. К тому же мы сможем присваивать буквам любые цифровые значения, — результат не изменится, — лишь бы только число было записано, как в компьютере, в двоичном коде. Но мало того, — такое правило справедливо не только для Библии, но и для учебника географии, и для поваренной книги, да и для любого даже самого затрапезного бульварного романа. Сие может означать ни больше, ни меньше, нежели то, что мироздание строится на числе один . Потрясающий вывод! Однако тот, кто еще не понял в чем тут фокус, пусть не торопиться подавать заявку на Нобелевскую премию, ибо сие является следствием общего и тривиального правила, справедливого для двоичного кода — там может быть лишь два значения: ноль и единица.
Единица, прибавленная к единице, в двоичной системе счисления даст число 10, и мы должны будем вновь, как учат нумерологи, продолжить сложение значащих цифр уже полученной суммы, — а такой результат дает опять-таки единицу.
Вероятно, стоит пояснить эту сторону двоичной арифметики. В двоичной системе счисления существует лишь два знака (символа): ноль (0) и единица (1). Понятное дело, что сами по себе сии символы полностью идентичны привычным нам десятичным знакам, однако этим внешнее сходство и заканчивается. Если к единице прибавить другую единицу, то в числе, обозначающем сумму (двойку десятичной системы), в разряде единиц уже не будет места, но даже если такое место и было бы чисто механически образовано, мы не имеем других знаков для обозначения цифр, кроме ноля и единицы. Точно так же нет места в разряде единиц и в десятичной системе, когда мы прибавляем единицу к девяти. Но на этот случай изобретена такая система записи (символика), когда в разряде единиц остается ноль, но единица появляется в разряде десятков: 9 + 1 = 10. Так и в двоичном коде пишут: 1 + 1 = 10. Тройка тут обозначится как 10 + 1 = 11. При прибавлении очередной единицы места, очевидно, не хватит уже не только в разряде единиц;, но и в разряде десятков, и мы вынуждены будем записать там нули, но ввести разряд сотен, что опять же можно сравнить с десятичной системой: 99 + 1 = 100. Пять соответственно обозначится как 101, шесть как 110, семь как 111, а восемь как 1000.
Приведем для большей ясности еще несколько примеров: число двенадцать десятичного кода в двоичном превратится в 1100, сорок будет записано в виде 101000, знаменитое число зверя в двоичном коде будет выглядеть просто угрожающе своей длиной: 1010011010, — действительно длинновато, но никуда не деться.
Кто-то, конечно, может сказать, что двоичная система искусственна и на практике неприменима. Здесь мы можем возразить, причем нам даже не придется вновь вспоминать компьютеры, которые по сумме всех операций с нулями и единицами давно уже обошли число операций людей с привычными всем десятичными числами. О компьютерах не стоит вспоминать прежде всего потому, что у Моисея или у Апостола Иоанна вряд ли был компьютер. Но дело в том, что, даже не отдавая себе отчета в этом, и Моисей, и Иоанн, да и любой из наших читателей чуть не ежесекундно пользуется двоичной арифметикой. Область ее использования называется логикой, основой которой являются общие вопросы и, соответственно, ответы: «да» (1) и «нет» (0).
В дополнение к сказанному мы должны отметить, что переход от одной системы отсчета к другой абсолютно устойчив с точки зрения математических операций: сложения, умножения, возведения в степень и даже более сложных действий с числами. Например, в двоичном коде 10х 10 = 100 — а десять и сто в двоичном коде есть соответственно два и четыре в десятичном. Далее, в двоичном коде 100+ 11 = 111, — в десятичном коде та же операция знакома нам под таким видом: 4 + 3 = 7.
Итак, все правила арифметики остаются прежними. Фатальная ошибка наступает тогда, когда мы начинаем вычислять сумму значащих цифр. Пример? — Извольте. Запишем число зверя в разных системах отсчета, а далее вычислим его нумерологическую сумму. Начнем мы с десятичной системы:
666 ->6 + 6 + 6= 18 -> 1+8 = 9
Для девятеричного кода сие число будет выглядеть как 820. Будем, понятное дело, подсчитывать сумму по правилам сложения девятеричных чисел:
820 ->8 + 2 + 0= 11 -> 1+1 = 2
В семеричной системе счисления число зверя запишется так:
1641 -> 1 + 6 + 4 + 1 = 15 -> 1 + 5 = 6
Подсчитаем на всякий случай и сумму двоичного кода:
1010011010 -> 1 + 0 + 1+ 0 + 0 + 1 + 1 + 0 + 1 + 0 = 101 ->
1 + 0 + 1 = 10 -> 1 + 0 = 1 (как мы и обещали) .
Как видим, в итоге мы получили в качестве суммы цифр числа зверя и единицу, и двойку, и девятку, и шестерку. Нумерологу есть из чего выбрать. Фатально же в этом методе то, что в отличие от умножения, деления, возведения в степень, не говоря уже о сложении, исходное число абсолютно невосстанавливаемо по конечному результату.
Читать дальшеИнтервал:
Закладка: