Берндт Хайнрих - Зачем мы бежим, или Как догнать свою антилопу [Новый взгляд на эволюцию человека] [litres]
- Название:Зачем мы бежим, или Как догнать свою антилопу [Новый взгляд на эволюцию человека] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2020
- Город:Москва
- ISBN:978-5-389-18474-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Берндт Хайнрих - Зачем мы бежим, или Как догнать свою антилопу [Новый взгляд на эволюцию человека] [litres] краткое содержание
«Я утверждаю, что наши способность и страсть к бегу – это наше древнее наследие, сохранившиеся навыки выносливых хищников. Хотя в современном представителе нашего вида они могут быть замаскированы, наш организм все еще готов бегать и/или преследовать воображаемых антилоп. Мы не всегда видим их в действительности, но наше воображение побуждает нас заглядывать далеко за пределы горизонта. Книга служит напоминанием о том, что ключ к пониманию наших эволюционных адаптаций – тех, что делают нас уникальными, – лежит в наблюдении за другими животными и уроках, которые мы из этого извлекаем». (Бернд Хайнрих)
Зачем мы бежим, или Как догнать свою антилопу [Новый взгляд на эволюцию человека] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Хотя в первую же неделю пребывания в Ороно я получил серьезную травму спины, в конечном счете я стал членом сборной по легкой атлетике и кросс-кантри. Я не был крупным, как многие наши ребята, и не бегал, как газель. Я долгое время сравнивал себя с другими по размеру, силе и скорости, и неизменно оказывался не в первых рядах. Но здесь, в сборных командах, можно было выбрать из множества специализаций: бег с препятствиями, спринт, метание молота и копья, толкание ядра, бег на средние дистанции, прыжки в высоту, в длину и с шестом. Я стал стайером, бегуном на дальние дистанции. Не нужно быть на кого-то похожим – это было важным жизненным уроком для меня.
У бегунов на дальние дистанции есть одна общая черта. Все хорошие бегуны – худые. Спортсмены, специализирующиеся на весе, такие как толкатели ядра или метатели молота, сильно отличаются от стайеров. Эти два направления – крайности в телосложении, координации, скорости и выносливости. В основе их различий лежат многочисленные и разнообразные аспекты физиологии. Первые для того, чтобы быть на грани человеческих возможностей, должны иметь массивное туловище с объемными мышцами и толстые, прочные кости, чтобы поддерживать их. Им требуется повышенная доля быстросокращающихся мышечных волокон, которые анаэробно (то есть без участия кислорода) сжигают углеводы для взрывного высвобождения энергии. Их соревнования обычно занимают секунды, подготовка – годы.
Бегун на длинные дистанции должен почти что плыть по земле, иногда многие часы подряд. В идеале у него должны быть легкие тонкие кости и длинные конечности с вытянутыми мышцами, как у птиц. Ключ к успеху стайера – стабильное поступление кислорода в его сжигающие жир мышцы. Это требует сложной поддерживающей системы, включающей в себя сердце с большим ударным объемом, способное при необходимости биться быстрее или медленнее. Ему нужны толстые артерии, обширная сеть капилляров, повышенная вместимость легких, большие топливные запасы в мышцах, печени и других отделах тела. Его клетки должны быть заполнены митохондриями – микроскопическими блоками питания, которые с помощью ферментов преобразуют топливо и кислород в энергию, которая затем используется для сокращения мышц. Кратковременное повышение мощности спринтера или метателя молота не связано с митохондриями и, следовательно, не требует кислорода, а также вспомогательных систем для его подачи.
Способность организма непрерывно снабжать кислородом мышцы (а также мозг и все другие органы) подвергается серьезнейшему испытанию при беге на большие дистанции. Механизм работы сердца и легких, своеобразный насос, очень важен для этой задачи, но кровь важнее всего. Наша кровь специализируется на переносе молекул кислорода из легких в митохондрии, действуя в согласии с механизмами транспортировки на короткие расстояния через мембраны самих мышечных клеток.
Способность крови, перекачиваемой сердцем, переносить кислород увеличивается почти в сто раз по сравнению с плазмой благодаря содержанию кислородосодержащих транспортных средств – красных кровяных телец. Каждое из 25 триллионов наших красных кровяных телец заполнено миллионами железосодержащих белковых молекул, называемых гемоглобином, и каждая молекула гемоглобина может загружать из легких четыре молекулы кислорода, а затем отправлять их по капиллярам, например в мышечную ткань. Гемоглобин называют дыхательным пигментом, потому что при кислородной загрузке он имеет ярко-красный цвет, а когда кровь в венах возвращается к сердцу и легким, становится голубым.
Поступая в капилляры, кислород накапливается в больших концентрациях, что препятствует дальнейшей разгрузке гемоглобина. Работа сердца по перекачке крови была бы напрасной, если бы не второй пигмент, очень похожий на гемоглобин. Это белок, называемый мио глобином («мио» указывает на мышцы). Из-за него мясо имеет красный цвет. Миоглобин связывает кислород в мышечных волокнах даже с большей легкостью, чем гемоглобин в крови, таким образом удаляя кислород из крови и делая его доступным для клеточного метаболизма. Концентрация кислорода постепенно снижается от высокого уровня в крови до низкого в клетках, где он используется.
Не во всем мясе есть миоглобин. Как мы все знаем, у курицы есть белое и темное, или красное, мясо. Поэтому на каждом пикнике можно услышать спор из-за того, кто получит грудку (белое), а кто – ножку (темное). Лично я обычно выбираю темное из-за железа в миоглобине, которое нужно всем бегунам. Белое мясо состоит в основном из быстросокращающихся анаэробных мышечных волокон, способных к взрывной спринтерской силе; в красном мясе преобладают медленносокращающиеся волокна, требующие кислорода. Они сокращаются с меньшей силой, но при этом обладают большей выносливостью. У тетерева, как и у курицы, есть белые грудные мышцы, и он словно взрывается при взлете подобно петарде. Но он неспособен к долгому полету. После нескольких таких взрывных перелетов подряд тетерев уже не может летать. С другой стороны, при помощи темных мышц своих ног он может бегать вечно. Летунам на дальние расстояния, так же как и марафонцам, нужно темное мясо. Перелетные птицы, например гуси, кулики, многие певчие виды имеют очень темные мышцы груди (то есть мышцы крыльев).
Мышцы ног человека содержат как быстро-, так и медленносокращающиеся волокна. Это сочетание делает наши мышцы не белыми и не темно-красными, а, можно сказать, розовыми. Мышцы ног марафонцев содержат от 79 до 95 % (у первоклассных бегунов) медленносокращающихся волокон. В среднем у человека их порядка 50 %, а у лучших спринтеров – около 25 %. Они сжигают жир и требуют постоянной подачи кислорода для работы, чтобы избежать появления молочной кислоты, которая быстро вызывает усталость.
У разных людей разное соотношение быстро- и медленносокращающихся волокон, что предрасполагает их либо к спринту, либо к выносливости. Считается, что мы рождаемся с индивидуальными соотношениями типов мышц и волокон. Однако нет исследований, которые проследили бы динамику развития мышечных волокон от малыша до взрослого спринтера или бегуна на большие расстояния; мы не знаем, является ли тип мышечных волокон предопределенным при рождении или же оформляется в раннем возрасте в связи с его образом жизни.
Исследователи определяют процентное соотношение типов волокон (относительно безболезненно, как мне сказали) с помощью биопсии наших мышц, а затем окрашивая и под микроскопом подсчитывая клетки различных видов, чтобы определить потенциал человека для спринта и выносливости. В какой-то мере на изменения типов волокон влияют тренировки. Совсем недавно установили, что есть два типа быстросокращающихся волокон, называемых a и b . Быстросокращающиеся волокна типа a немного более аэробны, чем b , и их можно тренировать. В среднем быстросокращающиеся волокна распределяются между типами a и b поровну, но у лучших марафонцев b -волокна почти полностью отсутствуют. Считается, что тип волокна определяется его иннервацией. Один нейрон активирует множество волокон одновременно в так называемой моторной единице. Быстросокращающиеся моторные единицы обычно включают один нейрон, иннервирующий от трехсот до восьмисот волоконных клеток, в то время как медленносокращающиеся моторные единицы состоят из нейрона и от десяти до ста волоконных клеток. Тренировка включает не только биохимическую адаптацию волокон, но и их нейронную координацию в работе.
Читать дальшеИнтервал:
Закладка: