Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Название:Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-113024-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока краткое содержание
В формате PDF A4 сохранен издательский макет.
Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Глава 2
Почему наш мозг учится лучше, чем существующие машины
Глядя на последние достижения в сфере искусственного интеллекта,можно подумать, будто мы наконец-то сообразили, как скопировать и даже превзойти человеческое научение и интеллект. Согласно некоторым самопровозглашенным пророкам, машины вот-вот поработят нас. Ничто не может быть дальше от истины. На самом деле, большинство когнитивистов, несмотря на значительный прогресс в области искусственных нейронных сетей, прекрасно понимают, что возможности этих машин крайне ограниченны. По правде говоря, почти все искусственные нейронные сети осуществляют только те операции, которые наш мозг выполняет бессознательно, за несколько десятых долей секунды, – прежде всего это восприятие образа, его распознавание, классификация и установление значения 15. Однако в отличие от машин наш мозг умеет не только это, он способен изучать образ сознательно, тщательно, шаг за шагом, в течение нескольких секунд. Он формулирует символические представления (репрезентации) и эксплицитные теории мира, которыми мы можем поделиться с окружающими с помощью речи.
Операции такого рода – медленные, разумные, символические – остаются исключительной привилегией нашего вида (пока). Современные алгоритмы машинного обучения их практически не воспроизводят. Несмотря на активные исследования в области машинного перевода и логики, искусственные нейронные сети часто обвиняют в том, что они пытаются изучить все на одном уровне, словно решение всех задач сводится к автоматической классификации. Для человека с молотком все похоже на гвоздь! Но наш мозг гораздо гибче. Получив информацию, он быстро расставляет приоритеты и по возможности выводит общие, логические, эксплицитные принципы.
Чего не хватает искусственному интеллекту?
Ответив на этот вопрос, мы сможем выявить уникальные характеристики человеческой способности к научению. Вот краткий и, вероятно, неполный список функций, которыми обладает даже младенец, но которые отсутствуют в большинстве современных искусственных систем.
Усвоение абстрактных понятий.Большинство искусственных нейросетей воспроизводит только самые первые стадии обработки информации – анализ изображения, который зрительные области нашего мозга осуществляют менее чем за пятую долю секунды. Алгоритмы глубокого обучения далеко не так глубоки, как утверждают некоторые. По словам Йошуа Бенжио, одного из изобретателей алгоритмов глубокого обучения, такие системы в основном схватывают поверхностные, статистические закономерности в данных, а не абстрактные понятия высокого уровня 16. Например, чтобы распознать объект, алгоритмы глубокого обучения часто полагаются на те или иные очевидные особенности изображения – скажем, определенный цвет или форму. Измените эти детали – и производительность алгоритма резко упадет: современные сверточные нейронные сети не способны распознать, что составляет сущность объекта. Они не понимают, что стул остается стулом независимо от того, сколько у него ножек (четыре или только одна) или из чего он сделан (из стекла, металла или пластика). Тенденция обращать внимание на поверхностные признаки делает эти сети восприимчивыми к ошибкам. Написано множество статей о том, как обмануть нейронную сеть: возьмите банан, измените несколько пикселей или прицепите к нему определенную наклейку. Вуаля! – нейронная сеть подумает, что это тостер!
Разумеется, человек, которому показали изображение на долю секунды, иногда совершает те же промахи, что и машина, и может принять собаку за кошку 17. Однако, если ему дать чуть больше времени, он тут же исправит ошибку. В отличие от компьютера мы обладаем способностью подвергнуть сомнению наши убеждения и переориентировать внимание на те аспекты образа, которые не согласуются с первым впечатлением. Этот второй анализ, сознательный и разумный, задействует наши общие способности к рассуждению и абстракции. Искусственные нейронные сети упускают из виду одну очень важную вещь: человеческое научение – это не просто настройка фильтра распознавания образов, это построение абстрактной модели мира. Например, когда мы учимся читать, мы приобретаем абстрактное представление о каждой букве алфавита, которое позволяет не только распознавать ее во всех возможных вариантах, но и генерировать новые:

Когнитивист Дуглас Хофштадтер однажды сказал, что распознать букву А – настоящая проблема для искусственного интеллекта! Данное язвительное замечание, несомненно, является сильным преувеличением, но доля истины в нем есть: даже в таком тривиальном контексте люди умело справляются с абстракциями. Этот наш дар лежит в основе одного забавного явления повседневной жизни капчи – коротенькой последовательности букв, которую просят распознать некоторые сайты, дабы убедиться, что вы человек, а не машина. Многие годы капчи успешно противостояли машинам. Но компьютерная наука развивается быстро: в 2017 году искусственной системе удалось распознать капчу почти на человеческом уровне 18. Неудивительно, что этот алгоритм имитирует человеческий мозг сразу в нескольких отношениях. Совершая истинный tour de force [11] Tour de force ( франц .) – букв . «подвиг». ( Прим. перев.)
, он умудряется извлечь скелет каждой буквы, внутреннюю сущность буквы А, после чего использует все ресурсы статистического мышления, чтобы проверить, применима ли эта абстрактная идея к имеющемуся образу. И все же этот компьютерный алгоритм, каким бы сложным он ни был, работает только с капчами. Наш мозг применяет способность распознавать абстракции во всех аспектах повседневной жизни.
Эффективная обработка данных.Все согласятся с тем, что современные нейронные сети обучаются слишком медленно: им требуются тысячи, миллионы, даже миллиарды элементов данных, чтобы сформировать представление об определенной области. У нас даже есть экспериментальные доказательства этой медлительности. Например, чтобы научиться приемлемо играть на консоли Atari, нейронной сети, разработанной DeepMind , необходимо минимум 900 часов, а человеку – всего 2! 19Другой пример – овладение речью. По оценкам психолингвиста Эммануэля Дюпу, в большинстве французских семей дети слышат от 500 до 1000 часов речи в год; этого более чем достаточно для усвоения языка Декарта, даже с такими мудреностями, как soixante douze («семьдесят два») или s'il vous plaît («пожалуйста»). С другой стороны, в племени цимане, населяющем север боливийской Амазонки, дети слышат только 60 часов речи в год, но это отнюдь не мешает им отлично говорить на языке цимане. Для сравнения: лучшие современные компьютерные системы от Apple , Baidu и Google требуют в 20–1000 раз больше данных, чтобы достичь даже мизерной языковой компетенции. В плане научения эффективность человеческого мозга остается непревзойденной: машины способны поглощать огромное количество информации, зато мы способны обрабатывать ее более эффективно. Иными словами, из минимума данных люди умеют извлекать максимум.
Читать дальшеИнтервал:
Закладка: