Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Название:Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-113024-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока краткое содержание
В формате PDF A4 сохранен издательский макет.
Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Социальное научение. Человек – единственный вид, который добровольно делится информацией: мы многому учимся у других людей благодаря речи. Данная способность до сих пор остается вне досягаемости современных искусственных нейросетей. В искусственных моделях знания зашифрованы, рассеяны в значениях сотен миллионов синаптических весов. В этой скрытой, имплицитной форме их нельзя извлечь и избирательно передать другим. Мы, напротив, можем эксплицитно сообщить другим информацию самого высокого уровня – ту, которая достигает нашего сознания. Сознательное знание неразрывно связано с возможностью его вербального выражения: всякий раз, когда мы приходим к более или менее четкому пониманию некоего явления, ментальная формула находит отклик в нашем языке мышления, и мы можем сообщить о ней окружающим с помощью речи. Необычайная эффективность, с которой человек делится своими знаниями с другими, используя минимальное количество слов («Чтобы попасть на рынок, поверните направо, на маленькую улочку за церковью»), до сих пор беспрецедентна как для животного мира, так и для мира компьютеров.
Научение с одной попытки.Ярчайший пример такой эффективности – усвоение нового материала с первой попытки. Если я употреблю новый глагол, скажем, «курдячить» [12] Вымышленный глагол из искусственной фразы на основе русского языка «Глокая куздра штеко будланула бокра и курдячит бокрёнка», предложенной Л.В. Щербой в 1930-е годы. ( Прим. перев .)
, хотя бы один раз, вы тоже сможете его использовать. Конечно, некоторые искусственные нейросети могут запомнить мою фразу. Но что машины пока не умеют делать хорошо, так это интегрировать новую информацию в существующую сеть знаний – а человеческому мозгу это отлично удается. Вы не только запоминаете новый глагол «курдячить», но и мгновенно понимаете, как его спрягать и вставлять в другие предложения: вы часто курдячите? я курдячил вчера, а они курдячат сегодня . Когда я говорю: «Давайте покурдячим завтра» – вы не просто узнаете новое слово, вы вставляете его в обширную систему символов и правил. Например, «курдячить» – личный глагол II спряжения ( я курдячу, ты курдячишь, он курдячит и т.д.). Научиться – значит успешно внедрить новые знания в существующую сеть.
Систематичность и язык мышления.Грамматические правила – лишь один из примеров необычайного таланта нашего мозга: способности обнаруживать общие законы, лежащие в основе конкретных случаев. Будь то математика, язык, наука или музыка, человеческий мозг ухитряется извлекать из них абстрактные принципы, систематические правила, которые он может вновь применить в самых разных контекстах. Возьмем, к примеру, арифметику: наша способность складывать два числа носит очень общий характер – как только мы научились этой процедуре на малых числах, мы без труда можем применить ее к произвольно большим числам. Но главное – мы умеем делать обобщающие выводы. Многие дети в возрасте пяти-шести лет обнаруживают, что за каждым числом n следует число n + 1 и что последовательность целых чисел, следовательно, бесконечна – наибольшего числа просто не существует. Лично я до сих пор с трепетом вспоминаю момент, когда я это осознал – на самом деле, это была моя первая математическая теорема. Какие необыкновенные способности к абстракции! Каким образом нашему мозгу, состоящему из конечного числа нейронов, удается концептуализировать бесконечность?
Современным искусственным нейросетям недоступен даже такой простой абстрактный закон, как «за каждым числом следует другое число». Абсолютные истины – не их конек. Систематичность 20, способность к обобщению на основе некоего символического правила, а не поверхностного сходства по-прежнему ускользает от большинства современных алгоритмов. Иронично, но так называемые алгоритмы глубокого обучения практически не приспособлены к глубокому анализу.
Наш мозг, напротив, превосходно умеет выводить формулы на своем собственном, ментальном языке. Например, он может выразить понятие бесконечного множества, ибо обладает внутренним языком, наделенным такими абстрактными функциями, как отрицание и квантификация (бесконечное = не конечное = за пределами любого числа). Американский философ Джерри Фодор (1935–2017) предложил теоретическое объяснение этой способности: он утверждал, что мы мыслим символами, которые комбинируются в соответствии с систематическими правилами особого «языка мышления» 21. Возможности такого языка обусловлены его рекурсивной природой: каждый вновь созданный объект (скажем, понятие бесконечности) может быть немедленно использован в новых комбинациях, без ограничений. Сколько существует бесконечностей? Этот, казалось бы, абсурдный вопрос задал себе математик Георг Кантор (1845–1918) и сформулировал теорию трансфинитных чисел. Способность «бесконечно использовать конечный набор средств», согласно Вильгельму фон Гумбольдту (1767–1835), характеризует все человеческое мышление.
Некоторые искусственные модели пытаются имитировать усвоение абстрактных математических правил у детей, но для этого они должны овладеть совсем иной формой научения – той, которая опирается на уже существующий набор правил и базовых положений и предполагает быстрый выбор самых емких и правдоподобных из них 22. С этой точки зрения научение становится похожим на программирование: оно состоит в выборе простейшей внутренней формулы среди всех доступных на языке мышления.
Современные нейронные сети по большей части не способны репрезентировать весь спектр абстрактных фраз, формул, правил и теорий, с помощью которых мозг Homo sapiens моделирует мир. Едва ли это случайно: в этом есть нечто сугубо человеческое, нечто такое, чего нет в мозге других видов животных и что современная нейробиология еще не успела изучить подробно – поистине уникальный признак нашего вида. По всей видимости, люди – единственные приматы, чей мозг репрезентирует наборы символов, которые комбинируются в соответствии со сложным древовидным синтаксисом 23. В частности, сотрудники моей лаборатории доказали: услышав последовательность звуков – например, бип-бип-бип-буп , – человеческий мозг мгновенно строит теорию относительно лежащей в ее основе абстрактной структуры (три идентичных звука плюс один непохожий). Оказавшись в аналогичной ситуации, обезьяна обнаруживает последовательность из четырех звуков, понимает, что последний отличается, но, похоже, не интегрирует эти фрагментарные знания в единую формулу. Откуда нам это известно? Изучая мозговую деятельность обезьян, мы видим, как отдельные нейронные сети реагируют на количество и последовательности, но не наблюдаем интегрированного паттерна активности в области, отвечающей за речь у людей, так называемой зоне Брока 24.
Читать дальшеИнтервал:
Закладка: