Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Название:Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-113024-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока краткое содержание
В формате PDF A4 сохранен издательский макет.
Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как мы уже убедились, две тысячи лет спустя прогресс в сфере машинного обучения заставил ученых прийти к аналогичному выводу. Обучение протекает значительно эффективнее, если машина обладает двумя свойствами: широким пространством гипотез (набором ментальных моделей с множеством возможных настроек) и сложными алгоритмами, которые корректируют эти настройки в соответствии с данными, полученными из внешнего мира. Как однажды сказал один из моих друзей, в дискуссии о роли наследственности и окружающей среды мы недооцениваем и первое, и второе! Чтобы учиться, необходимы две структуры: обширный набор потенциальных моделей и эффективный алгоритм для их адаптации к реальности.
Искусственные нейронные сети делают это по-своему, доверяя представление ментальных моделей миллионам регулируемых связей. Хотя такие системы способны на быстрое и бессознательное распознавание образов или речи, репрезентация более абстрактных гипотез, таких как правила грамматики или логика математических операций, им недоступна.
Человеческий мозг, по всей видимости, функционирует иначе: наши знания множатся за счет комбинирования символов. Согласно данной точке зрения, мы появляемся на свет с огромным количеством возможных комбинаций потенциальных мыслей. Этот язык мышления, включающий абстрактные допущения и грамматические правила, присутствует в нас изначально и порождает необъятное царство гипотез. Теория байесовского мозга гласит: чтобы эти гипотезы проверить, наш мозг должен действовать, как ученый: собирать статистические данные, а затем использовать их для выбора наиболее подходящей генеративной модели.
Такой взгляд на научение может показаться нелогичным. Он предполагает, что мозг каждого маленького ребенка потенциально содержит все языки мира, все объекты, все лица и все инструменты, с которыми он когда-либо сможет столкнуться, а также все слова, факты и события, которые он когда-либо сможет запомнить. Комбинаторика мозга такова, что все эти объекты мысли потенциально уже есть в нем – наряду с соответствующими априорными вероятностями, а также способностью обновлять их на основе текущего опыта. Неужели ребенок в самом деле учится именно так?
Глава 3
Невидимые знания младенцев
На первый взгляд не может быть никаких сомнений в том, что мозгноворожденного младенца начисто лишен всяких знаний. И правда: разве не разумно полагать, как это делал Джон Локк, что ум ребенка – «чистый лист», который приобретает свое содержание исключительно под влиянием окружающей среды? Похожую точку зрения высказывал и Жан-Жак Руссо (1712–1778) в своем трактате «Эмиль, или О воспитании» (1762): «Мы рождаемся способными к учению, но ничего не понимающими, ничего не сознающими» [15] Руссо, Ж.-Ж. Эмиль, или О воспитании. / Ж.-Ж. Руссо. Педагогические сочинения. В 2 т. – М.: Педагогика, 1981. – Т. 1. ( Прим. перев .)
. Почти два столетия спустя Алан Тьюринг, отец современной информатики, выдвинул следующую гипотезу: «Предположительно мозг ребенка – это нечто вроде блокнота, какие покупают в магазине канцелярских товаров: простой механизм, зато множество пустых листов».
Теперь мы знаем, что эта точка зрения в корне ошибочна. Внешность бывает обманчива: несмотря на свою незрелость, новорожденный мозг уже обладает значительными познаниями, унаследованными вследствие долгой эволюционной истории. По большей части, однако, эти знания остаются невидимыми, ибо никак не проявляются в примитивном поведении малышей. Ученым-когнитивистам потребовалась немалая изобретательность, чтобы продемонстрировать огромный репертуар способностей, с которыми рождаются все дети. Объекты, числа, вероятности, лица, речь… диапазон первоначальных знаний младенцев поистине широк.
Понятие о физических объектах
На интуитивном уровне все мы знаем, что мир состоит из твердых объектов. На самом деле, он состоит из атомов, но на макроуровне, где живем мы, эти атомы часто объединяются в более крупные сущности, которые движутся как единое целое и иногда сталкиваются, не утрачивая при этом своей внутренней связности. Эти большие скопления атомов и есть то, что мы называем «объектами». Существование объектов является фундаментальным свойством окружающей среды. Должны ли мы этому специально учиться? Нет. Миллионы лет эволюции, похоже, запечатлели это знание в самых глубинах нашего мозга. Ребенок, родившийся всего несколько месяцев назад, уже знает, что мир состоит из объектов, которые движутся, занимают пространство, не исчезают без причины и не могут находиться в двух разных местах одновременно 38. В некотором смысле мозг младенца уже знает законы физики: он ожидает, что траектория движения объекта будет непрерывной как в пространстве, так и во времени, без каких-либо внезапных скачков или исчезновений.
Откуда нам это известно? Дело в том, что младенцы выказывают явное удивление в определенных экспериментальных ситуациях, нарушающих законы физики. В современных лабораториях исследователи превращаются в настоящих волшебников (см. цветную иллюстрацию 5). В маленьких театрах, специально созданных для малышей, они показывают всевозможные фокусы: предметы на сцене появляются, исчезают, множатся, проходят сквозь стены… Скрытые камеры зорко следят за движением глаз ребенка. Результаты не вызывают сомнений: к магии чувствительны даже те младенцы, которым едва исполнилось несколько недель. Эти крохи уже обладают глубокими интуитивными представлениями о физическом мире и, как и все мы, удивляются, когда их ожидания не оправдываются. Увеличив изображение глаз, ученые определяют, куда смотрят дети и как долго. После этого они могут точно измерить степень удивления и установить, что именно рассчитывали увидеть малыши.
Спрячьте какой-нибудь предмет за книгой, а затем внезапно «уроните» ее на стол, как будто скрытой вещи больше не существует (она упала в специальный люк): дети будут просто ошеломлены! Они не понимают, как твердый предмет мог буквально раствориться в воздухе. Их потрясению нет границ, когда предмет исчезает за одним экраном и вдруг появляется за другим или когда игрушечный поезд, катящийся вниз по склону, беспрепятственно проезжает сквозь стену. Кроме того, дети знают, что предмет – это нечто целое: увидев два конца палочки, которые синхронно движутся по обе стороны экрана, они, естественно, полагают, что за экраном скрывается одна палочка. Вообразите себе их удивление, когда экран опускается и они видят не одну, а две палочки (см. рисунок ниже).
Таким образом, можно утверждать, что младенцы с самого начала обладают обширными познаниями о мире, хотя и не знают всего. Конечно, нет. Обычно им требуется несколько месяцев, чтобы понять, как два объекта могут поддерживать друг друга 39. Поначалу они не знают, что если предмет уронить, то он упадет. Лишь очень постепенно дети осознают все факторы, которые заставляют объект падать или оставаться на месте. Прежде всего малыши обнаруживают, что предметы падают, когда теряют опору. Сперва они полагают, что любого контакта достаточно, чтобы игрушка оставалась неподвижной – например, можно положить ее на край стола, и никуда она оттуда не денется. Со временем они выясняют, что игрушка должна находиться не только в контакте со столом, но и на нем, а не под ним или сбоку от него. Наконец, спустя еще несколько месяцев дети понимают, что и этого правила недостаточно: главное, чтобы над столом оставался центр тяжести предмета – вот тогда игрушка точно не упадет!
Читать дальшеИнтервал:
Закладка: