Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Название:Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-113024-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислас Деан - Как мы учимся. Почему мозг учится лучше, чем любая машина… пока краткое содержание
В формате PDF A4 сохранен издательский макет.
Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чувство числа – лишь один из примеров того, что я называю невидимым знанием младенцев: интуитивных представлений, которыми они обладают с рождения и на которых строится последующее научение. Вот еще несколько навыков, которые исследователи обнаружили у малышей спустя несколько недель после рождения.
Интуитивные представления о вероятностях
От чисел до вероятностей всего один шаг. Ученые уже сделали его, решив выяснить, могут ли дети в возрасте нескольких месяцев предсказать исход лотереи. В ходе эксперимента младенцам сначала показывают прозрачный ящик, внутри которого хаотично перемещаются четыре шара – три красных и один зеленый. В самом низу ящика есть отверстие. В какой-то момент из него выкатывается либо зеленый шар, либо красный. Примечательно, что удивление ребенка напрямую связано с вероятностью происходящего. Если из ящика выпадает красный шар – наиболее вероятное событие, ибо большинство шаров красного цвета, – ребенок смотрит на него одно мгновение. Если же из ящика появляется зеленый шар – весьма неожиданный исход, с вероятностью один к четырем, – взгляд фиксируется на нем гораздо дольше.
Дальнейшие исследования подтверждают: в своих маленьких головках младенцы прогоняют детальную мысленную симуляцию ситуации и связанных с ней вероятностей. Если шары разделены некой перегородкой, перемещаются ближе или дальше от отверстия или выкатываются из ящика с разными интервалами, младенцы интегрируют все эти параметры в свои ментальные вычисления. Длительность их взгляда всегда отражает маловероятность наблюдаемого сценария, которую они, судя по всему, вычисляют исходя из количества задействованных предметов.
Все эти навыки превосходят возможности большинства современных искусственных нейросетей. И действительно, реакция удивления далеко не тривиальна. Удивление свидетельствует о том, что мозг сумел оценить шансы на тот или иной исход и пришел к выводу, что наблюдаемое событие крайне маловероятно. Поскольку во взгляде младенцев видны все признаки удивления, их мозг явно способен к вероятностным вычислениям. Кстати, одна из самых популярных современных теорий функционирования мозга рассматривает этот орган как вероятностный компьютер, который манипулирует распределениями вероятностей и использует их для предсказания будущих событий. Эксперименты показывают, что таким «продвинутым» калькулятором вооружены даже младенцы.
В ходе целой серии исследований было установлено: помимо калькулятора, мозг младенца снабжен всеми механизмами, позволяющими делать сложные вероятностные выводы. Помните математическую теорию вероятностей преподобного Байеса, благодаря которой можно проследить наблюдаемое явление до его вероятных причин? Похоже, дети способны применять правило Байеса уже через несколько месяцев после рождения 49. Они не только знают, как перейти от ящика с цветными шарами к соответствующим вероятностям (прямая цепочка умозаключений), как мы только что убедились, но и умеют переходить от наблюдений обратно к содержимому ящика (обратная цепочка умозаключений). В одном эксперименте малышам показывают непрозрачный ящик, после чего человек с завязанными глазами вынимает из него несколько шаров. Шары появляются один за другим; большинство из них красного цвета. Могут ли младенцы сообразить, что в ящике лежит множество красных шаров? Да! В конце исследователи открывают ящик. Если оказывается, что большинство шаров зеленые, дети удивляются и смотрят в ящик дольше, чем в ящик, полный красных шаров. Их логика безупречна: если в ящике лежат в основном зеленые шары, как объяснить тот факт, что экспериментатор достал так много красных?
Хотя вам может показаться, что в этом поведении нет ничего особенного, оно подразумевает необычайную способность к имплицитным, бессознательным рассуждениям, работающим в обоих направлениях: на основании случайной выборки младенцы могут угадать характеристики множества, а на основании множества – характеристики случайной выборки.
Таким образом, с самого рождения наш мозг уже наделен интуитивной логикой. В настоящее время существует множество вариантов базовых экспериментов, описанных выше. Все они свидетельствуют об одном: дети ведут себя, как настоящие ученые, и рассуждают, как хорошие специалисты по статистике, исключая наименее вероятные гипотезы и выискивая скрытые причины различных явлений 50. В частности, американский психолог Фэй Сюй показала, что, если одиннадцатимесячные дети видят, как исследователь достает из контейнера преимущественно красные шары, а затем обнаруживают, что большинство шаров в ящике желтые, они не только удивляются, но и делают дополнительный вывод: этот человек предпочитает красные шары! 51Если же дети видят, что выборка не случайна, то есть следует определенному шаблону (скажем, желтый шар, красный шар, желтый шар, красный шар), они приходят к заключению, что ее произвел человек, а не машина 52.
Логика и вероятность тесно связаны. Как говорил Шерлок Холмс, «мой старый принцип расследования состоит в том, чтобы исключить все явно невозможные предположения. Тогда то, что остается, является истиной, какой бы неправдоподобной она ни казалась» [16] Конан Дойль, А. Берилловая диадема. / А. Конан Дойль. Собрание сочинений. В 8 т. – М.: Издательство «Правда», 1966. – Т. 1. ( Прим. перев .)
. Другими словами, мы можем превратить вероятность в уверенность, используя рассуждение для исключения некоторых возможностей. Если ребенок способен «жонглировать» вероятностями, значит, он владеет и логикой, ибо логическое мышление – всего лишь ограничение вероятностного рассуждения вероятностями 0 и 1 53. Недавно философ и психолог Люка Бонатти доказал это экспериментально. В его исследованиях десятимесячный ребенок видит, как за ширмой прячут два объекта: цветок и динозавра. Затем один из этих объектов достают, но какой именно – неизвестно: он лежит в горшке, так что видна только верхняя часть. После этого с другой стороны ширмы появляется динозавр. В этот момент ребенок может сделать логический вывод: «В горшке либо цветок, либо динозавр. Но это не может быть динозавр, потому что я только что видел, как он появился с другой стороны. Значит, в горшке цветок». И это работает: ребенок не удивляется, если исследователь достает из горшка цветок, но бурно реагирует, если там оказывается динозавр.
Кроме того, взгляд ребенка отражает интенсивность его логического мышления: как и у взрослого, его зрачки расширяются в тот момент, когда дедукция становится возможной. Малыш – настоящий Шерлок Холмс в пеленках – начинает с нескольких гипотез (это либо цветок, либо динозавр), а затем исключает некоторые из них (это точно не динозавр), тем самым переходя от вероятности к уверенности (это точно цветок).
Читать дальшеИнтервал:
Закладка: