Сэмюел Стернберг - Трещина в мироздании [litres]
- Название:Трещина в мироздании [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-109309-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэмюел Стернберг - Трещина в мироздании [litres] краткое содержание
Трещина в мироздании [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
66
L. A. Marraffini and E. J. Sontheimer, “CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA”, Science 322 (2008): 1843–1845.
67
B. Wiedenheft et al., “Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense”, Structure 17 (2009): 904–912.
68
R. E. Haurwitz et al., “Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease”, Science 329 (2010): 1355–1358.
69
J. E. Garneau et al., “The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA”, Nature 468 (2010): 67–71.
70
R. Sapranauskas et al., “The Streptococcus thermophilus CRISPR/Cas System Provides Immunity in Escherichia coli”, Nucleic Acids Research 39 (2011): 9275–9282.
71
B. Wiedenheft et al., “Structures of the RNA-Guided Surveillance Complex from a Bacterial Immune System”, Nature 477 (2011): 486–489.
72
T. Sinkunas et al., “In Vitro Reconstitution of Cascade-Mediated CRISPR Immunity in Streptococcus thermophilus”, EMBO Journal 32 (2013): 385–394.
73
D. H. Haft et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes”, PLoS Computational Biology 1 (2005): e60.
74
K. S. Makarova et al., “Evolution and Classification of the CRISPR-Cas Systems”, Nature Reviews Microbiology 9 (2011): 467–477.
75
K. S. Makarova et al., “An Updated Evolutionary Classification of CRISPR-Cas Systems”, Nature Reviews Microbiology 13 (2015): 722–736; S. Shmakov et al., “Discovery and functional Characterization of Diverse Class 2 CRISPR-Cas Systems”, Molecular Cell 60 (2015): 385–397.
76
E. Deltcheva et al., “CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III”, Nature 471 (2011): 602–607.
77
A. P. Ralph and J. R. Carapetis, “Group A Streptococcal Diseases and Their Global Burden”, Current Topics in Microbiology and Immunology 368 (2013): 1–27.
78
M. Jinek et al., “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity”, Science 337 (2012): 816–821.
79
G. Gasiunas et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria”, Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 86.
80
То есть приближен по структуре к генам человека.
81
То есть атакующей ту же мишень.
82
L. Cong et al., “Multiplex Genome Engineering Using CRISPR/Cas Systems”, Science 339 (2013): 819–823; P. Mali et al., “RNA-guided Human Genome Engineering via Cas9”, Science 339 (2013): 823–826; M. Jinek et al., “RNA-programmed Genome Editing in Human Cells”, eLife 2 (2013): e00471; W. Y. Hwang et al., “Efficient Genome Editing in Zebrafish Using a CRISPR-Cas System”, Nature Biotechnology 31 (2013): 227–229; S. W. Cho, S. Kim, J. M. Kim and J.-S. Kim, “Targeted Genome Engineering in Human Cells with the Cas9 RNA-guided Endonuclease”, Nature Biotechnology 31 (2013): 230–232; W. Jiang et al., “RNA-guided Editing of Bacterial Genomes Using CRISPR-Cas Systems”, Nature Biotechnology 31 (2013): 233–239.
83
H. Wang et al., “One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering”, Cell 153 (2013): 910–918.
84
Скрещивание потомков с представителями родительского поколения.
85
Это лишь основные, существует еще несколько аминокислот, кодируемых мРНК у различных организмов.
86
S.-T. Yen et al., “Somatic Mosaicism and Allele Complexity Induced by CRISPR/Cas9 RNA Injections in Mouse Zygotes”, Developmental Biology 393 (2014): 3–9.
87
G. A. Sunagawa et al., “Mammalian Reverse Genetics Without Crossing Reveals Nr 3a as a Short-Sleeper Gene”, Cell Reports 14 (2016): 662–677.
88
Gasiunas et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage.”
89
L. S. Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression”, Cell 152 (2013): 1173–1183; L. A. Gilbert et al., “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes”, Cell 154 (2013): 442–451.
90
В настоящее время выделяют около 20 000 человеческих генов.
91
M. Herper, “This Protein Could Change Biotech Forever”, Forbes, March 19, 2013, www.forbes.com/sites/matthewherper/2013/03/19/the-protein-that-could-change-biotech-forever/#7001200f473b.
92
H. Ledford, “CRISPR: Gene Editing Is Just the Beginning”, Nature News , March 7, 2016.
93
K. Loria, “The Process Used to Edit the Genes of Human Embryos Is So Easy You Could Do It in a Community Bio-Hacker Space”, Business Insider , May 1, 2015.
94
J. Zayner, “DIY CRISPR Kits, Learn Modern Science by Doing”, www.indiegogo.com/projects/diy-CRISPR-kits-learn-modern-science-by-doing#/.
95
E. Callaway, “Tapping Genetics for Better Beer”, Nature 535 (2016): 484–486.
96
Разумеется, ракообразные – беспозвоночные. Тут имеется в виду их внешний скелет ( примеч. науч. ред. ).
97
P. Piffanelli et al., “A Barley Cultivation-Associated Polymorphism Conveys Resistance to Powdery Mildew”, Nature 430 (2004): 887–891.
98
N. V. Federoff and N. M. Brown, Mendel in the Kitchen: A Scientist’s View of Genetically Modified Foods (Washington, DC: Joseph Henry Press, 2004), 54.
99
J. H. JØrgensen, “Discovery, Characterization and Exploitation of Mlo Powdery Mildew Resistance in Barley”, Euphytica 63 (1992): 141–152.
100
R. BÜschges et al., “The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance”, Cell 88 (1997): 695–705.
101
W. Jiang et al., “Demonstration of CRISPR/Cas9/sgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice”, Nucleic Acids Research 41 (2013): e188; N. M. Butler et al., “Generation and Inheritance of Targeted Mutations in Potato ( Solanum Tuberosum L.) Using the CRISPR/Cas System”, PLoS ONE 10 (2015): e0144591; S. S. Hall, “Editing the Mushroom”, Scientific American 314 (2016): 56–63.
102
H. Jia and N. Wang, “Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA”, PLoS ONE 9 (2014): e93806.
103
S. Nealon, “Uncoding a Citrus Tree Killer”, UCR Today , February 9, 2016.
104
D. Cyranoski, “CRISPR Tweak May Help Gene-Edited Crops Bypass Biosafety Regulation”, Nature News , October 19, 2015.
105
A. Chaparro-Garcia, S. Kamoun, and V. Nekrasov, “Boosting Plant Immunity with CRISPR/Cas”, Genome Biology 16 (2015): 254–257.
106
W. Haun et al., “Improved Soybean Oil Quality by Targeted Mutagenesis of the Fatty Acid Desaturase 2 Gene Family”, Plant Biotechnology Journal 12 (2014): 934–940.
107
В ходе их реакции с аспарагином – аминокислотой, входящей в состав белков (а значит, и пищи).
108
B. M. Clasen et al., “Improving Cold Storage and Processing Traits in Potato Through Targeted Gene Knockout”, Plant Biotechnology Journal 14 (2016): 169–176.
109
United States Department of Agriculture, “Glossary of Agricultural Biotechnology Terms”, last modified February 27, 2013, www.usda.gov/wps/portal/usda/usdahome?navid=BIOTECH_GLOSS&navtype=RT&parentnav=BIOTECH.
110
USDA Economic Research Service, “Adoption of Genetically Engineered Crops in the U. S.”, last modified July 14, 2016, www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx.
111
Pew Research Center, “Eating Genetically Modified Foods”, www.pewinternet.org./2015/01/29/public-and-scientists-views-on-science-and-society/pi_2015-01-29_science-and-society-03–02/
112
J. W. Woo et al., “DNA-Free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins”, Nature Biotechnology 33 (2015): 1162–1164.
113
“Breeding Controls”, Nature 532 (2016): 147.
114
H. Ledford, “Gene-Editing Surges as US Rethinks Regulations”, Nature News , April 12, 2016.
115
A. Regalado, “DuPont Predicts CRISPR Plants on Dinner Plates in Five Years”, MIT Technology Review , October 8, 2015.
116
E. Waltz, “A Face-Lift for Biotech Rules Begins”, Nature Biotechnology 33 (2015): 1221–1222.
117
M. C. Jalonick, “Obama Signs Bill Requiring Labeling of GMO Foods”, Washington Post , July 29, 2016.
118
C. Harrison, “Going Swimmingly: AquaBounty’s GM Salmon Approved for Consumption After 19 Years”, SynBioBeta , November 23, 2015, http://synbiobeta.com/news/aquabounty-gm-salmon/.
119
A. Pollack, “Genetically Engineered Salmon Approved for Consumption”, New York Times , November 19, 2015.
120
Углеродный след – это совокупность всех выбросов парниковых газов, возникших прямо и косвенно при производстве продукта. Например, в углеродный след выращиваемого лосося войдут в том числе и выбросы двигателя автомобиля, подвозившего корм к лососевой ферме ( примеч. науч. ред. ).
121
Интервал:
Закладка: