Александр Марков - Перспективы отбора. От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества
- Название:Перспективы отбора. От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества
- Автор:
- Жанр:
- Издательство:АСТ, Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-114115-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Перспективы отбора. От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества краткое содержание
Перспективы отбора. От зеленых пеночек и бессмысленного усложнения до голых землекопов и мутирующего человечества - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Условия содержания бесполых и половых популяций сделали настолько одинаковыми, насколько это было возможно. Численность всех популяций поддерживалась примерно на одном уровне (порядка 100 000 особей), они содержались в одинаковых емкостях, при одинаковой температуре и на одинаковой питательной среде.
По прошествии 1000 поколений была измерена приспособленность подопытных популяций. Для этого предковый штамм, помеченный флуоресцентной меткой, смешивали в равной пропорции с тестируемым штаммом и выращивали в течение 30 поколений в тех же условиях, в которых проходил основной эксперимент, а потом подсчитывали долю меченых клеток. Чем она меньше, тем выше приспособленность тестируемого штамма. Оказалось, что половые популяции адаптировались лучше бесполых: у первых приспособленность за 1000 поколений выросла на 10–15 %, у вторых — лишь на 5–10 %. Но это результат, можно сказать, тривиальный: способность полового размножения ускорять адаптацию уже не раз подтверждалась в экспериментах (о некоторых из них рассказано в нашей книге «Эволюция. Классические идеи в свете новых открытий»). Хотелось бы знать, что конкретно происходит с геномами половых и бесполых особей и каков генетический базис повышенного темпа адаптации половых популяций.
Чтобы разобраться в этом, исследователи использовали полногеномное секвенирование. Через каждые 90 поколений делались выборки из четырех половых и четырех бесполых популяций. Поскольку ДНК в каждой пробе содержала геномы множества клеток и анализировали их на мощном секвенаторе HiSeq 2500, Illumina , то в итоге получилась внушительная коллекция искомых мутаций, тех самых, что возникли в популяциях в ходе эволюционного эксперимента. Для каждой мутации имелась информация об изменении ее частоты со временем (примерно как в Исследовании № 3). Идентификация редких мутаций чревата ошибками, поэтому для надежности анализировались только те мутации, частота которых в данной популяции достигала 10 % хотя бы в два момента времени. Мутации, не получившие заметного распространения, игнорировались.
Все такие мутации, «выскакивавшие» по ходу экспериментальной адаптации, были сопоставлены с мутациями, которые к концу эксперимента зафиксировались, то есть имелись уже у всех клеток в данной популяции (рис. 7.2).
Оказалось, что во всех популяциях, как бесполых, так и половых, появилось примерно поровну новых мутаций (в среднем 44 на популяцию). Кроме того, среди зарегистрированных мутаций везде было примерно одинаковое соотношение несинонимичных (значимых, меняющих аминокислоту в белке), синонимичных (не меняющих белок) и межгенных (расположенных в некодирующих областях генома). Это значит, что процесс мутагенеза в двух вариантах опыта не различался.
Однако количество и состав зафиксировавшихся мутаций оказался совершенно разным в бесполых и половых популяциях. В первом случае зафиксировалось большинство (78 %) зарегистрированных мутаций, в том числе 79 % несинонимичных, 74 % синонимичных и 78 % межгенных. Иными словами, зафиксировались примерно равные доли мутаций всех трех типов. В половых популяциях все было по-другому. Во-первых, зафиксировалось гораздо меньше мутаций (16 % от общего числа зарегистрированных), во-вторых, среди них оказались в основном значимые мутации (22 % от числа возникших), синонимичные не зафиксировались вовсе (0 %), а межгенных закрепилось лишь 11 % (рис. 7.2).

рис. 7.2.Соотношение всех появившихся мутаций и тех, которые к концу эксперимента зафиксировались, то есть встречались во всех клетках данной популяции. Суммированы данные по четырем бесполым и четырем половым популяциям. По рисунку из McDonald et al., 2016 .
Этот результат отлично согласуется с идеей о том, что в половых популяциях фиксируются только полезные мутации (среди которых больше всего значимых, но есть и межгенные, находящиеся в регуляторных участках генома). Синонимичные мутации обычно нейтральны, и поэтому в половых популяциях они не фиксировались. В бесполых же популяциях вместе с немногочисленными полезными мутациями фиксировался весь их «генетический фон», включая вредные и нейтральные мутации, оказавшиеся в одном геноме с полезной (разумеется, при условии, что эффект полезной мутации перевешивал суммарные эффекты всех вредных мутаций, распространяющихся вместе с ней за счет генетического автостопа).
Здесь необходимо пояснить, что в долгосрочной перспективе в природных популяциях фиксируется больше всего нейтральных мутаций, в том числе синонимичных. Но это происходит не за счет отбора, а за счет генетического дрейфа (случайных колебаний частот аллелей). Однако в рамках данного эксперимента дрейфом можно пренебречь: слишком мало для него прошло времени и никаких кризисных снижений численности («бутылочных горлышек») не было. Для того чтобы в популяции с постоянной численностью 100 000 особей за счет дрейфа зафиксировалась новая нейтральная мутация, требуется время порядка сотен тысяч поколений. Но эксперимент продолжался всего 1000 поколений, поэтому в подопытных популяциях за счет дрейфа ничего зафиксироваться не могло. Те мутации, которые в них зафиксировались, сделали это наверняка под действием отбора, а не дрейфа.
Таким образом, полученный результат показывает, что половое размножение помогает отбору отделять полезные мутации от всех прочих и закреплять только их, тогда как в бесполых популяциях вместе с немногочисленными полезными мутациями «автостопом» фиксируется много всякого мусора.
Этот вывод подтвердился при анализе данных по изменению частоты встречаемости мутаций. В половых популяциях частоты разных мутаций менялись независимо друг от друга, а в бесполых большие группы функционально не связанных друг с другом мутаций меняли свою частоту синхронно. Первое соответствует индивидуальному действию отбора на отдельные гены, второе — клональной эволюции целых геномов. Кроме того, в бесполых популяциях некоторые группы мутаций сначала быстро наращивали свою частоту, а потом та снижалась вплоть до полного исчезновения. Это результат клональной интерференции, то есть вытеснения клонов с удачными мутациями другими клонами, обладающими еще более удачными мутациями. В половой популяции полезные мутации, возникшие у разных особей, объединялись и вместе закреплялись, но в бесполой популяции они могли только конкурировать и вытеснять друг друга.
Чтобы еще детальнее разобраться в том, как секс влияет на молекулярную эволюцию, ученые попытались напрямую оценить влияние отдельных мутаций на приспособленность дрожжей. Для этого они искусственно внедряли выявленные мутации в геном предкового штамма. Как и следовало ожидать, в каждой группе мутаций, зафиксировавшихся в бесполых популяциях (а при бесполом размножении мутации фиксируются именно группами), обнаружилась как минимум одна полезная мутация. Однако многие другие оказались нейтральными или вредными. Некоторые из них снижают приспособленность на 1–3 %. Ясно, что они могли зафиксироваться только за счет генетического автостопа. Предположение, согласно которому в бесполых популяциях из-за автостопа могут закрепляться мутации со значительным вредным эффектом, высказывалось ранее, но экспериментально подтвердить его удалось впервые.
Читать дальшеИнтервал:
Закладка: