Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии

Тут можно читать онлайн Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Литагент АСТ, год 2018. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
  • Автор:
  • Жанр:
  • Издательство:
    Литагент АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-094327-2
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии краткое содержание

Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - описание и краткое содержание, автор Крейг Вентер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор этой книги Крейг Вентер – один из самых знаменитых современных генетиков, он первым расшифровал геном человека. Однако этот радикальный научный прорыв оказался лишь этапом в дальнейшей карьере великого ученого-первопроходца: сегодня основанный им Институт Вентера находится на переднем крае биотехнологий: именно там ведутся наиболее передовые исследования, посвященные синтезу искусственной жизни. Вентер убежден, что человечество вступает в «цифровую эру биологии» – эпоху, когда дальнейшая эволюция человеческого рода окажется в наших собственных руках.

Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать книгу онлайн бесплатно, автор Крейг Вентер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы убедиться, что мы в итоге получим полные двуспиральные цепочки, мы затем добавили ДНК-полимеразу и свободные нуклеотиды, чтобы в любом месте, где 3’-экзонуклеаза откусила от цепочки слишком много, полимераза вставила недостающие основания на место. Кроме того, в смесь был добавлен еще один фермент, ДНК-лигаза, чтобы соединить перекрывающиеся концы. Когда все ферменты закончили свою работу, мы получили все четыре кассеты, сцепленные в куски из 24 000 пар оснований, или цепочки в 24 кб [18] Кб – «килобаза», т. е. тысяча оснований. . Чтобы произвести все такие «укрупненные» кассеты по 24 кб, которые вместе составляют полный геном M. genitalium , мы повторили процесс двадцать пять раз.

Так как мы размножали синтетическую ДНК в E. coli, то у нас было достаточно ДНК для секвенирования. После проверки секвенирования всех 25 кассет мы повторили процесс in vitro , на этот раз соединяя три кассеты по 24 кб в кассеты по 72 000 пар оснований, то есть каждая кассета составляла одну восьмую от генома M. genitalium . Чтобы сделать это, нам сначала надо было освободить (с помощью рестриктазы) кассеты по 24 кб от вектора-ИБХ, который использовался, чтобы растить их в E. coli .

Наши векторы-ИБХ были сконструированы так, что на обеих сторонах нашей вставленной синтетической ДНК у них была последовательность из восьми определенных оснований. Эта восьмерка нуклеотидов, не встречающаяся в естественном геноме M. genitalium , распознается особой рестриктазой, называемой NotI . Когда NotI разрезает ДНК ИБХ, синтетический фрагмент в 24 кб освобождается. На этом этапе мы получили синтетическую ДНК, длина которой более чем вдвое превышала предыдущий рекорд для синтетических ДНК-сборок.

Следующим шагом было повторение процесса еще раз, теперь для получения сегментов по 144 000 пар оснований, каждый сегмент – четверть генома. Для этого две кассеты по 72 кб подвергались тому же процессу сборки in vitro . Однако тут мы вступали на неизвестную территорию и доводили нашу методику до предела. На предпоследнем этапе – получении сегментов в половину генома (290 000 пар оснований) путем соединения четырех четвертей в две половинки – мы уперлись в проблему: сегменты по 290 кб оказались слишком большими для размещения их в E. coli .

Это побудило нашу команду начать поиски других видов, способных устойчиво вмещать столь большие молекулы синтетической ДНК. Мы обратили внимание на Bacillus subtilis, которую использовала японская группа для выращивания больших сегментов генома цианобактерий {137} 137 Itaya, Mitsuhiro, Kenji Tsuge, Maki Koizumi, and Kyoko Fujita. “Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome.” PNAS , 2005, 102 (44), стр. 15971–15976. Опубликовано онлайн 18 октября 2005. DOI: 10.1073/pnas.0503868102 . Но хотя B. subtilis действительно могла вместить большие сегменты по 290 кб, извлечь неповрежденную ДНК из этих клеток оказалось невозможно, так что мы стали искать дальше. Решение пришло из мира более сложных клеток – эукариот. Это был любимый экспериментальный объект ученых всего мира, изучающих биологию эукариот: пивные дрожжи Saccharomyces cerevisiae . Они веками применялись в виноделии и хлебопечении, а в лабораторной практике стали популярны благодаря относительно маленькому геному и ряду особенностей, облегчающих генетические манипуляции. Например, S. cerevisiae используют для так называемой гомологичной рекомбинации: если сегмент ДНК имеет на своих концах последовательности, сходные или идентичные концевым последовательностям какого-то участка в геноме S. cerevisiae , то этот сегмент можно вставить в геном дрожжей вместо «родного».

Нашим гуру по части дрожжей был Владимир Носков, научный сотрудник группы синтетической биологии и биоэнергетики в Институте Крейга Вентера в Мэриленде. Носков учился в Санкт-Петербургском государственном университете в России и потом продолжил образование там же, готовя диссертацию по генетике дрожжей. Проведя пять лет в Японии за изучением репликации хромосомальной ДНК и «контрольной точки» клеточного цикла дрожжей, где ДНК проходит контроль и починку, он затем работал в НИЗ в Бетесде. Там, в группе структуры и функции хромосом, Носков придумал несколько новых приемов для технологии манипулирования большими кусками ДНК в дрожжах – трансформационно-ассоциированного рекомбинантного (ТАР) клонирования, более совершенного, чем старый метод искусственных хромосом дрожжей (YACs) .

Дрожжевые клетки, которые примерно в десять раз больше клеток E. coli, защищены толстой клеточной стенкой, препятствующей трансформации ДНК в клетке. Чтобы справиться с этим, ТАР-клонирование использует фермент зимолиазу, расщепляющий большую часть клеточной стенки, в результате чего образуется так называемый сферопласт, в который легче поместить большие куски ДНК {138} 138 Larionov, V., N. Kouprina, J. Graves, X. N. Chen, J. R. Koren-berg, and M. A. Resnick. “Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination.” PNAS , 1996, 93 (1), стр. 491–496. . В результате ТАР-клонирования получаются кольцевые искусственные хромосомы. Они стабильны, а кольцевая структура позволяет легко очищать их от нормальных линейных хромосом дрожжей.

Мы обнаружили, что с помощью ТАР-клонирования мы можем стабильно растить наши большие конструкции из синтетической ДНК, а используя дрожжевую систему гомологичной рекомбинации – соединять наши перекрывающиеся сегменты-четвертушки в куски в половину генома. Затем эта система позволит нам собрать в дрожжах весь геном M. genitalium целиком. Таким образом перед нами замаячил конец долгого и трудного восхождения к первому синтетическому геному живого организма.

Мы вставили в дрожжевые клетки шесть кусков ДНК: ТАР-клонирующий вектор и пять соответствующих геному M. genitalium (четыре сегмента по четверти синтетического генома и еще один разделенный надвое сегмент для перекрытия мест ТАР-клонирования). Чтобы этот эксперимент сработал, надо, чтобы дрожжевая клетка приняла все шесть сегментов ДНК и гомологичной рекомбинацией соединила их между собой. Мы проверили размер ДНК в 94 трансформированных дрожжевых клетках и обнаружили, что в семнадцати из них содержится полный синтетический геном M. genitalium .

Казалось, мы преуспели в сборке нашего синтетического бактериального генома в дрожжевых клетках, но надо было еще секвенировать ДНК, чтобы проверить точность этого генома и убедиться, что процесс сборки прошел без ошибок. Это звучит просто, но нам пришлось разработать новые методы, чтобы извлечь нашу синтетическую хромосому из дрожжевых клеток, а она, по нашей оценке, составляла около 5 % всей содержащейся в них ДНК. Для очистки нашей синтетической ДНК мы, зная последовательности генома дрожжей и синтетического генома, подобрали рестриктазы, которые порезали на мелкие кусочки только ДНК дрожжей. Затем путем гель-электрофореза мы отделили расщепленные остатки дрожжевой ДНК от невредимой синтетической хромосомы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Крейг Вентер читать все книги автора по порядку

Крейг Вентер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь на скорости света. От двойной спирали к рождению цифровой биологии отзывы


Отзывы читателей о книге Жизнь на скорости света. От двойной спирали к рождению цифровой биологии, автор: Крейг Вентер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x