Чарльз Эллис - Эпигенетика

Тут можно читать онлайн Чарльз Эллис - Эпигенетика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Техносфера, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эпигенетика
  • Автор:
  • Жанр:
  • Издательство:
    Техносфера
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-94836-257-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Эллис - Эпигенетика краткое содержание

Эпигенетика - описание и краткое содержание, автор Чарльз Эллис, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Издание осуществлено при финансовой поддержке Российского Фонда Фундаментальных Исследований по проекту № 09-08-07118.
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.

Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)

Эпигенетика - читать книгу онлайн бесплатно, автор Чарльз Эллис
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Общая парадигма компенсации дозы — классического эпигенетически контролируемого процесса — была также исследована у других модельных организмов, в особенности у С. elegans (Meyer et al., 2004; глава 15) и Drosophila (Gilflllan et al., 2004; глава 16). Пока что неясно, происходит ли компенсация дозы у птиц, несмотря на тот факт, что они являются гетеросаметными организмами. У Drosophila компенсация дозы между полами происходит не за счет инактивации Х-хромосомы у самки, а путем двукратного усиления [up-regulation] работы единственной Х-хромосомы самца. Любопытно, что существенными компонентами являются, как известно, две некодирующие РНК, roX1 и rоХ2 , и их экспрессия специфична для самцов. Хотя и существуют, вероятно, аналогичные механистические различия в каких-то деталях между мухами и млекопитающими, ясно, что активирование ремоделинга хроматина и модификаций гистонов, в особенности зависящее от MOF ацетилирование H4K16 на Х-хромосоме самца, играет ключевую роль в компенсации дозы у Drosophila . Каким именно образом энзимы, модифицирующие гистоны, такие как MOF-ацетилтрансфераза гистонов, «нацеливаются» на Х-хромосому самца, остается предметом будущих исследований. Более того, полагают, что такие зависящие от АТФ энзимы ремоделинга хроматина, как фактор ремоделинга нуклеосом (NURF, nucleosome-remodeling factor), являются антагонистами активностей комплекса компенсации дозы (DCC, dosage compensation complex).

В совокупности в этом разделе и в разделах 10 и 11 дано описание механизмов для модификаций хроматина, направляемых РНК, в том виде, как это происходит с конститутивным гетерохроматином, хромосомой Xi и, возможно, также и сайленсингом генов, опосредованным PcG. Исходя из этих любопытных параллелей, можно постулировать, что часть РНК или неспаренных ДНК могли бы обеспечить привлекательный первичный триггер для стабилизации комплексов PcG в PREs или «компрометированной» промоторной функции, где они могли бы «чувствовать» качество транскрипционного процессинга. Аберрантная или блокированная элонгация и (или) ошибки в сплайсинге могли бы стимулировать взаимодействие между PcG, связанным с PRE, и промотором, приводя к выключению транскрипции. Таким образом, инициация PcG-сайленсинга индуцировалась бы переходом от продуктивной транскрипции к непродуктивной. Сейчас только лишь начинает проясняться, в какой мере комплексы trxG могут использовать контроль качества РНК и (или) процессинг первичных РНК-транскриптов как часть поддержания «включенных» транскрипционных состояний (Sanchez-Elsner et al., 2006).

14. Репрограммирование клеточной судьбы

Вопрос о том, каким образом можно изменить или ревертировать судьбу клетки, давно интересовал ученых. Зардышевая клетка и ранние эмбриональные клетки отличаются от других клеточных компартментов как «конечные» [«ultimate»] стволовые клетки свойственной им тотипотентностью. Хотя спецификация клеточной судьбы у млекопитающих допускает около 200 разных клеточных типов, в принципе существуют два главных дифференцировочных перехода: от стволовой (тотипотентной) клетки к полностью дифференцированной клетке и между покоящейся (quiescent, или G 0) и пролиферирующей клеткой. Эти типы представляют собой крайние конечные точки среди множества промежуточных состояний, согласующихся с множеством различных компоновок эпигенома в развитии млекопитающих. В ходе эмбриогенеза динамическое увеличение эпигенетических модификаций проявляется в переходе от оплодотворенного ооцита к стадии бластоцисты и затем в имплантации, гаструляции, развитии органов и росте плода. Большинство этих модификаций или импринтов может быть стерто путем переноса ядра дифференцированной клетки в цитоплазму денуклеированного ооцита. Однако некоторые метки могут сохраняться, ограничивая тем самым нормальное развитие клонированных эмбрионов, а некоторые из них могут даже наследоваться как модификации зародышевого пути (g-mod) (рис. 3.18), которые у млекопитающих, вероятно, включают метилирование ДНК.

Регенерация печени и репарация мышечной клетки представляют собою исключения среди тканей млекопитающих, поскольку эти органы могут регенерировать в ответ на повреждение, хотя большинство других тканей не способны к репрограммированию. У других организмов, таких как растения и Axolotl , некоторые соматические клетки могут действительно репрограммировать свой эпигеном и вновь вступать в клеточный цикл, чтобы регенерировать утраченную или поврежденную ткань (Tanaka, 2003). В целом, однако, репрограммирование соматических клеток невозможно, если они не подвергаются клеточно-инженерным манипуляциям с целью рекапитулировать раннее развитие после пересадки ядра (NT, nuclear transfer) в денуклеированный ооцит. Впервые это было продемонстрировано клонированием лягушек (Xenopus), а в более недавнее время — созданием Долли, первого клонированного млекопитающего (Campbell et al., 1996; глава 22).

Рис 318Репрограммирование путем пересадки ядра В течение жизни особи в - фото 19

Рис. 3.18.Репрограммирование путем пересадки ядра

В течение жизни особи в разных клеточных линиях приобретаются эпигенетические модификации (mod) (левая часть рисунка). Пересадка ядра (NT) соматической клетки приводит к реверсии процесса терминальной дифференцировки, уничтожая большинство эпигенетических меток (mod); однако некоторые модификации, которые обычно присутствуют и в зародышевом пути (g-mod), не могут быть удалены. В ходе неопластической трансформации (из нормальной клетки в опухолевую), вызываемой серией генетических мутаций (красные звезды), накапливаются эпигенетические нарушения. Эти эпигенетические нарушения (mod), но не мутации, могут быть стерты в процессе репрограммирования после NT. Этот подход позволяет оценивать взаимодействие между генетическим и эпигенетическим вкладами в генез опухоли (из R. Jaenisch, с изменениями)

У млекопитающих были идентифицированы три основных препятствия для эффективного соматического репрограммирования. Во-первых, некоторые соматические эпигенетические метки (например, репрессивные H3К9me3) стабильно передаются в ряду делений соматических клеток и устойчивы к репрограммированию в ооците. Во-вторых, ядро соматической клетки не способно рекапитулировать асимметрию репрограммирования. возникающую в оплодотворенном эмбрионе как следствие дифференциальных эпигенетических меток, унаследованных мужским и женским гаплоидными геномами (см. Mayer et al., 2000; van der Heiden et al., 2005; глава 20). В-третьих, передача импринтированных локусов, которые особенно важны на стадии фетального и плацентарного развития, недостаточно надежно поддерживается после NT (Morgan et al., 2005). Большинство клонированных эмбрионов абортируют, и это заставляет предполагать, что нарушение эпигенетических импринтов является основным узким местом для нормального развития и может быть причиной низкой эффективности вспомогательных репродуктивных технологий (ART, assisted reproductive technologies) и ухудшенного физического состояния клонированных животных.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Эллис читать все книги автора по порядку

Чарльз Эллис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эпигенетика отзывы


Отзывы читателей о книге Эпигенетика, автор: Чарльз Эллис. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x