Анастасия Казанцева - В интернете кто-то неправ!
- Название:В интернете кто-то неправ!
- Автор:
- Жанр:
- Издательство:АСТ : CORPUS
- Год:2016
- Город:Москва
- ISBN:978-5-17-092181-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анастасия Казанцева - В интернете кто-то неправ! краткое содержание
Первую книгу Аси Казанцевой «Кто бы мог подумать? Как мозг заставляет нас делать глупости» высоко оценили ученые и обычные читатели — уже несколько лет она остается бестселлером. В 2014 году книга была удостоена премии «Просветитель». Во всем, что делает Ася, будь то научно-популярные лекции, статьи или книги, проявляется ее редкое умение доступно и увлекательно говорить о сложном, не упрощая и не изменяя научному подходу.
В интернете кто-то неправ! - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Я на примере этих несчастных лягушек поняла две одинаково важные вещи: что я могу убивать животных и что мне это отчетливо не нравится. Позже я уклонялась от убийства крыс на кафедральных практиках, но уже скорее потому, что это было нетрудно сделать, а не потому, что их смерть причиняла мне страдания. Еще позже, уже работая на телеке, я собственноручно отрезала лягушке голову, когда это понадобилось нам для съемки сюжета про Луиджи Гальвани, — я жужжала на коллег, которые меня в это втравили, но скорее уже для того, чтобы они посильнее прониклись моей ценностью для коллектива. Со временем у меня сформировалось ощущение, что заставлять каждого из нас убить по крайней мере одну лягушку было правильно, но не потому, что в тех экспериментах заключалась такая уж великая учебная ценность, а потому, что это хорошая прививка от лицемерия. Ты уже не можешь сказать: «Лекарствами и косметикой, испытанными на животных, я пользоваться буду, но и осуждать их смерть тоже буду». Ну и вообще, важно знать о себе, что ты при необходимости можешь убить животное, несмотря на то, что у тебя тонкая душевная организация. Важно знать, что ты в принципе способен каким-то образом справляться со своей тонкой душевной организацией и делать то, что нужно. Важно не то, чтобы ты перестал жалеть лягушку, а то, чтобы ты перестал слишком жалеть себя.
Естественно, все эти рассуждения о поиске дополнительных смыслов относятся только к студенческим опытам, в которых нет задачи получения нового научного знания. Там, где такая задача есть, работают совершенно другие критерии оценки целесообразности.
На мышах и людях
Важно понимать, что у исследователей абсолютно не выражено стремление загубить как можно больше невинных зверюшек. Любой поиск по научным публикациям на слова animal testing приносит в основном материалы о том, как минимизировать потребность в таких исследованиях. Любые эксперименты над животными регулируются жесткими правилами и ограничиваются этическими комиссиями. Кроме того, работа с животными — это просто-напросто дорогой, длительный и трудоемкий процесс; везде, где возможно без него обойтись, ученые стремятся так и делать.
Число докторских степеней по биологии, присуждаемых в США, за последние 30 лет выросло почти вдвое [1], а число используемых животных при этом не увеличилось. Крыс и мышей (а также рыб, амфибий, рептилий и птиц) в США не подсчитывают с точностью до особи, но, по приблизительным оценкам, общее число позвоночных, используемых в экспериментах, составляло около 20 миллионов в год в середине восьмидесятых [2] и около 17 миллионов в год в середине нулевых [3]. Гораздо более точная статистика существует для всех млекопитающих помимо крыс и мышей (то есть для хомяков, кроликов, свиней и т. д.) — в 1984 году было использовано чуть больше 2 миллионов этих животных, а в 2014 ровно 834 453 штуки [4]. Эти цифры кажутся внушительными только до тех пор, пока мы не сравниваем их с количеством животных, ежегодно используемых в пищу. Например, с 8 666 662 000 куриц, съеденных в Америке в 2014 году [5].
Для чего нужны лабораторные животные? Три миллиона мышей, использованных в 2013 году в Великобритании, распределены [6] следующим образом. 59% животных задействованы в получении новых линий с помощью разнообразных методов генетической модификации, 28% двигают фундаментальную науку, 11,5% нужны для прикладных медицинских исследований. По 0,5% животных требуется для ветеринарных и экологических исследований, а оставшиеся полпроцента делят образовательные проекты и использование мышей для диагностики (например, если у вас есть пациент с подозрением на ту или иную инфекционную болезнь, но стандартные тесты ее пока не выявляют, можно взять у него немного крови, попробовать заразить мышей и понаблюдать за их состоянием).
Если я корректно поняла британскую статистику, то эти 59% отражают промежуточный этап исследований. Это те животные, чей геном был каким-то образом изменен, а теперь их скрещивают друг с другом для получения генетически однородных линий и проверяют, действительно ли измененные гены теперь работают (или, наоборот, перестали работать) именно так, как это было задумано. Когда этот процесс будет закончен, они начнут участвовать в фундаментальных или прикладных исследованиях. Значительная часть таких животных нужна для понимания причин человеческих болезней [7]. У вас есть какой-нибудь ген, про который вы точно знаете (или предполагаете), что его мутации увеличивают у людей риск развития диабета, или болезни Альцгеймера, или атеросклероза, или какой-нибудь разновидности рака. Вы находите соответствующий ген у мыши, нарушаете его работу, убеждаетесь, что полученные животные действительно чаще заболевают, а затем выясняете, почему именно это происходит и какие лекарственные вещества могут компенсировать полученный эффект.
Такой подход получается широко применять как раз благодаря тому, что мы с мышами родственники и многие гены у нас практически идентичны. Но бывает и другая задача: исследование тех генов, которые в случае человека, наоборот, заметно отличаются не то что от мышиных, а даже от генов шимпанзе. Почти каждый такой ген, естественно, подозревают в том, что он «делает нас людьми», и иногда с помощью генетически модифицированных мышей можно получить забавные подтверждения для этой гипотезы.
Самая знаменитая — и самая важная — из таких историй началась в конце 1980-х в одной из начальных школ города Брентфорда (де-факто это часть Лондона). Элизабет Ожер, которая занималась там с детьми, отстающими от школьной программы, обратила внимание на то, что сразу несколько учеников из одной семьи демонстрируют сходные нарушения речи. Они начинали говорить поздно, произносили слова неразборчиво (например, bu вместо blue ), не использовали предложений длиннее двух-трех слов, с трудом подбирали слова и часто использовали их неточно (например, говорили «стакан» или «чай», когда им показывали чашку и просили сказать, как называется этот предмет), а также испытывали трудности с восприятием грамматических конструкций (например, не чувствовали разницы между предложениями «за девочкой бежит лошадь» и «девочка бежит за лошадью»). При этом у детей не было умственной отсталости, они нормально справлялись с математикой, умели читать и писать; проблемы были связаны именно с устной речью. Элизабет и ее коллеги по школе обратились в отделение клинической генетики Лондонского детского госпиталя. Специалисты, работавшие там, составили родословную семьи [8]. Выяснилось, что ребенок может унаследовать заболевание от своего родителя с вероятностью 50% и у детей в одной и той же семье проблема может либо быть ярко выраженной, либо полностью отсутствовать. Это классическая картина наследования одной-единственной доминантной аллели [49] В Москве принято считать, что аллель (один из альтернативных вариантов одного и того же гена) — это слово мужского рода, а в женском роде его употребляют только петербуржцы. Тем не менее gramota.ru (со ссылкой на Орфографический словарь РАН) выступает в данном вопросе на стороне Северной столицы.
, и это стало сенсацией: до тех пор предполагалось, и небезосновательно, что в развитие речи вносят вклад много разных генов. Их действительно много, но среди них удалось выявить один особенно важный. Позже его идентифицировали; назвали FOXP 2; выяснили, что он кодирует фактор транскрипции (белок, который активирует считывание некоторых генов), важный для развития мозга; что этот белок у человека всего на две аминокислоты отличается от белка шимпанзе и что у неандертальцев он был таким же, как у нас; что FOXP 2 задействован во многих процессах, связанных с развитием мозга, но самое главное — он связан с речью не только у людей, а, по-видимому, вообще у всех животных, у которых в той или иной форме присутствует звуковая коммуникация между сородичами. Например, это касается певчих птиц: в норме зебровые амадины довольно точно воспроизводят песню, которую слышали в детстве, а вот при подавлении работы FOXP 2 издают вместо единой мелодии довольно разрозненные (и все время разные) звуки [9].
Интервал:
Закладка: