Джонджо МакФадден - Жизнь на грани
- Название:Жизнь на грани
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- ISBN:978-5-496-02158-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джонджо МакФадден - Жизнь на грани краткое содержание
Жизнь на грани - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
С живой материей все обстоит по-другому. Еще никому не удалось создать условия, при которых было бы возможно превращение «мертвая клетка —> живая клетка». Безусловно, размышления наших предков о подобном превращении вылились в идею о душе. Мы больше не верим в наличие души у клетки. Что же тогда исчезает безвозвратно, когда умирает клетка или человек?
Вы наверняка уже задумались о том, что нового нам может рассказать о жизни молодая наука — синтетическая биология и владеют ли специалисты в этой области ключом к тайне жизни? Возможно, самым известным представителем синтетической биологии является пионер в области расшифровки генома Крейг Вентер, который в 2010 году поднял в научных кругах настоящую бурю, заявив, что создал искусственную жизнь . Результаты его работы отразились в газетных заголовках по всему миру и породили панику от мысли о новых расах искусственно синтезированных существ, которые в будущем захватят всю нашу планету. На самом деле Вентеру и его команде удалось модифицировать уже существующую форму жизни, а не создать новую. Сначала команда ученых под руководством Вентера синтезировала ДНК, содержащую полный геном паразитической бактерии Mycoplasma mycoides , вызывающей легочные заболевания у домашних коз. Затем синтезированный геном пересадили в живую бактериальную клетку и весьма хитрым способом убедили ее заменить свою изначальную (и единственную) хромосому синтетической копией.
Результат экспериментов Крейга, безусловно, превосходен. Хромосома бактерии содержит 1,8 млн оснований (букв генетического кода), которые должны быть расположены в строго определенной последовательности. Но, по сути, ученым удалось сделать то, что каждый из нас выполняет без каких-либо усилий. Речь идет о трансформации веществ, содержащихся в пище, в нашу собственную плоть.
Синтез хромосомы и ее пересадка в живую клетку, проделанные Вентером и его командой, открывают абсолютно новые горизонты синтетической биологии, о которых мы поговорим в последней главе. С большой вероятностью этой молодой науке удастся предложить новые эффективные способы производства лекарств, выращивания зерна и борьбы с загрязняющими веществами. Тем не менее в ходе экспериментов, направленных на эти и другие результаты, ученым пока не удалось создать новую жизнь. Несмотря на достижение Вентера, тайна самой сути жизни продолжает ухмыляться нам в лицо. Ричарду Фейнману, нобелевскому лауреату по физике, приписывается такое высказывание-озарение: «Мы не способны понять то, чего не можем создать». Согласно этому утверждению, мы не понимаем жизнь, поскольку нам пока не удалось ее воссоздать. Мы умеем смешивать химические соединения, умеем нагревать их, подвергать облучению. Мы даже умеем, подобно Франкенштейну Мэри Шелли, оживлять их с помощью электричества. Но создать жизнь мы можем пока единственным способом — внедрить эти химические соединения в уже существующие живые клетки или употребить их в пищу, сделав их тем самым частью наших собственных организмов.
Так почему же мы до сих пор не способны справиться с задачей, с которой ежесекундно и без особых усилий справляются триллионы простейших микробов? Мы что-то упустили? Более 70 лет назад этот вопрос волновал известнейшего физика Эрвина Шредингера. Удивительный ответ, к которому пришел ученый, является ключевым моментом для содержания данной книги. Чтобы понять, почему вывод Шредингера о самых глубоких тайнах жизни был и остается революционным для науки, необходимо вернуться в самое начало XX века, когда спиралевидная структура ДНК еще не была открыта, а мир физики буквально переворачивался с ног на голову.
Квантовая революция
В результате стремительного развития науки в эпоху Просвещения (XVIII–XIX века) появились ньютоновская механика, исследования электромагнетизма и термодинамика. Время показало, что вместе эти три раздела физики успешно описывали движение и поведение всех макроскопических объектов и явлений окружающего нас мира — от пушечных ядер до часов, от ураганов до паровозов, от маятников до планет. Но когда в конце XIX и в первой половине XX века ученые направили внимание на микроскопические составляющие материи — атомы и молекулы, они обнаружили, что в микромире привычные физические законы не действуют. В физике назревала революция.
Первым революционным прорывом в физике начала XX века стал ввод в научный обиход понятия кванта. Уже 14 декабря 1900 года немецкий физик Макс Планк представил результаты своих трудов на заседании Немецкого физического общества. Именно этот день принято считать днем рождения квантовой теории. В то время считалось, что энергия теплового излучения, как любая другая форма энергии, распространяется в пространстве как волна. Проблема заключалась в том, что волновая теория не могла объяснить, каким образом некоторые теплые объекты излучали энергию. Планк высказал революционную мысль о том, что материя, из которой состояли эти теплые объекты, колеблется на определенных дискретных частотах. Из этого следовало, что тепловая энергия испускается небольшими дискретными порциями — квантами, которые, в свою очередь, являются неделимыми. Его простая теория имела ошеломительный успех, однако коренным образом отличалась от классической теории излучения, в рамках которой энергия считалась непрерывной. Согласно теории Планка, энергия выходит из материи как вода, но не непрерывным потоком, а отдельными неделимыми порциями — словно из закрытого, но подтекающего крана.
Сам Планк крайне настороженно относился к идее о том, что энергия прерывна. Однако спустя пять лет после того, как он выдвинул квантовую теорию, Альберт Эйнштейн развил эту идею и предположил, что любой вид электромагнитного излучения, включая свет, выходит не непрерывно, а в виде квантов — дискретными порциями, или частицами, которые мы теперь называем фотонами. Он отметил, что такой взгляд на природу света объясняет еще одно явление, долгое время остававшееся загадкой, а именно фотоэффект — испускание электронов веществом под воздействием света. Именно за объяснение фотоэффекта, а не за более известные его работы по теории относительности, Эйнштейну была присуждена Нобелевская премия по физике в 1921 году.
Тем не менее существовало множество доказательств того, что свет распространяется как непрерывная волна. Как же свет может быть одновременно прерывным и непрерывным? В то время этот вопрос казался бессмысленным, по крайней мере в рамках классической науки.
Следующий гигантский шаг на пути к новой физике был сделан датским физиком Нильсом Бором. В 1912 году Бор переехал в Манчестер и стал работать с Эрнестом Резерфордом. Незадолго до того Резерфорд опубликовал работу о планетарной модели атома с крошечным, но крепким ядром, расположенным в центре и окруженным еще более крошечными электронами, вращающимися вокруг ядра. Однако никто не мог объяснить, как атому удается сохранять стабильность. Согласно классической электромагнитной теории, отрицательно заряженные электроны постоянно излучают энергию света, вращаясь вокруг положительно заряженного ядра. В таком случае они бы потеряли энергию и очень быстро (за одну миллионную секунды) закрутились бы по спиральной траектории по направлению к ядру, что привело бы к распаду атома. Однако электроны так себя не ведут. Так в чем же здесь дело?
Читать дальшеИнтервал:
Закладка: