Александр Марков - Эволюция. Классические идеи в свете новых открытий
- Название:Эволюция. Классические идеи в свете новых открытий
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2014
- Город:Москва
- ISBN:978-5-17-083218-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание
Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.
Эволюция. Классические идеи в свете новых открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Наследственная изменчивость и дифференциальное размножение — это механизм самоорганизации, благодаря которому из простейших существ сами собой с неизбежностью развиваются те самые endless forms most beautiful and most wonderful («бесчисленные прекрасные и удивительные формы»), о которых с восхищением писал Дарвин в заключительном разделе «Происхождения видов». Все это поразительное многообразие жизни было в каком-то смысле «закодировано» в самых первых живых существах, в их ДНК или РНК, и в условиях среды, где им предстояло эволюционировать. Конечно, с учетом того, что условия среды будут многократно изменены самими эволюционирующими существами.
—————
Принципы онтогенеза (индивидуального развития) многоклеточных контринтуитивны, трудны для понимания, потому что мозг Homo sapiens плохо приспособлен для понимания процессов самоорганизации. Наше мышление адаптировано для постановки целей и поиска путей их достижения. Мы должны все контролировать (или понимать, кто контролирует и почему), иначе ничего не будет, кроме хаоса (отсюда, кстати, и живучесть креационизма, и конспирологические мифы о всесильных «мировых закулисах»).
Поэтому когда мы видим, как из чего-то простого само собой вдруг образуется что-то сложное, нам это кажется чудом, и мы начинаем подозревать воздействие какой-то особой организующей силы. Мы начинаем изобретать лишние сущности. В биологии таких сущностей напридумано множество: от вмешательства инопланетян и Божественного сотворения до ламарковского стремления к совершенству, радиальной энергии Тейяра де Шардена, активности Ю. В. Чайковского и т. д.
Ну а в данном случае, который показан на рисунке, — в случае самосборки снежинки из хаотически движущихся молекул воды — совершенно очевидно вмешательство Деда Мороза.

Где закодировано строение снежинки? Пожалуй, мы не сильно ошибемся, если скажем, что оно закодировано в свойствах молекулы воды в таком же смысле , в каком взрослый фенотип закодирован в геноме зиготы. И внешняя среда в обоих случаях сильно влияет на результат.
Контринтуитивность онтогенеза (как и эволюции) порождает множество проблем, и многие теоретики действительно на этом спотыкались. Попробуем разобраться постепенно.
Рассмотрим простой комочек клеток — ранний зародыш, который образовался из яйцеклетки в результате нескольких первых делений. Каждая клетка зародыша имеет один и тот же геном. Геном определяет свойства клетки, это ее «программа поведения». Программа у всех клеток зародыша одинаковая. Однако клетки начинают вести себя по-разному: одни превращаются в клетки кожи, другие — в клетки кишечника, третьи дают начало нервной системе.
Это происходит благодаря тому, что клетки обмениваются информацией — посылают друг другу химические сигналы и меняют свое поведение в зависимости от того, какие сигналы они получили от соседей. Кое-какие сигналы приходят и из внешнего мира. Например, клетки зародышей растений чувствуют земное притяжение и принимают его в расчет, когда решают, как им себя вести. Наконец, яйцеклетка с самого начала имеет простенькую разметку: один ее полюс отличается от другого по концентрации целого ряда веществ. Реальные яйцеклетки животных поляризованы, в частности, за счет того, что на одной их стороне содержится больше запасных питательных веществ (желтка), чем на другой.
Программа поведения у всех клеток зародыша изначально одна и та же, но она может состоять из нескольких отдельных наборов правил. То, какой из них данная клетка будет выполнять, зависит от получаемых клеткой сигналов. Каждое отдельное правило выглядит примерно так: если выполняются такие-то условия, сделай такое-то действие. Основное действие клетки — включение или выключение определенных генов. Это меняет свойства клетки, она начинает по-другому себя вести, по-другому реагировать на сигналы.
Правила поведения клетки определяются системой взаимодействий между генами — генно-регуляторными сетями. На физическом уровне правила «сделаны» из рецепторов, транскрипционных факторов, энхансеров, сигнальных молекул и белков, осуществляющих синтез и транспортировку этих молекул. Например, правило «Если получен сигнал А, начни выделять вещество Б», может быть сделано из рецептора вещества А, который активирует транскрипционный фактор В, который прикрепляется к энхансеру Г, расположенному около гена Д, который кодирует фермент, отвечающий за синтез вещества Б.
Сигнальные вещества, на которые клетки эмбриона реагируют, меняя свое поведение в зависимости от их концентрации, называются морфогенами. В приведенном примере в роли морфогена выступает вещество А.
Но как же все-таки получается, что клетки зародыша, имеющие одинаковую программу поведения и находящиеся, казалось бы, в одинаковых условиях, тем не менее ведут себя по-разному? Дело в том, что на самом деле они находятся в разных условиях. Так получается само собой в процессе деления клеток. Кто-то оказался внутри, кто-то снаружи, кто-то снизу, кто-то сверху, в ком-то концентрация морфогена А выше (потому что данная клетка сформировалась из той части яйцеклетки, где этого вещества было много), в ком-то ниже.
Еще у клеток может быть «счетчик делений», который сообщает им, сколько раз яйцеклетка уже поделилась. Этот счетчик тоже химический: в яйцеклетке изначально были определенные вещества (например, молекулы матричных РНК, считанные еще с генов материнского организма), запас которых не пополняется во время развития зародыша, и по тому, сколько в клетке осталось этих веществ, можно понять, сколько делений прошло с момента начала развития.
Программа поведения клетки может содержать, например, такие команды:
«Если ты снаружи от других клеток, и если концентрация морфогена А такая-то, и если концентрация морфогена Б равна нулю, и если с момента начала развития пройдено десять делений, то начни выделять морфоген Б». [87]
К чему приведет выполнение такой инструкции? Оно приведет к тому, что на поверхности зародыша в определенный момент (после десяти делений) появится одна-единственная клетка, выделяющая морфоген Б. Она будет расположена на строго определенном расстоянии от одного из полюсов зародыша, потому что в нашем примере морфоген А служит для изначальной разметки яйцеклетки. По концентрации морфогена А клетка может определить, на каком расстоянии от полюсов зародыша она находится.
Почему клетка, выделяющая морфоген Б, будет только одна? Потому что в инструкции есть такое условие: «Если концентрация морфогена Б равна нулю». Как только первая клетка, в которой выполнятся поставленные условия, начнет выделять вещество Б, его концентрация перестанет быть равной нулю, и поэтому другие клетки не начнут его выделять.
Читать дальшеИнтервал:
Закладка: