Александр Марков - Эволюция. Классические идеи в свете новых открытий
- Название:Эволюция. Классические идеи в свете новых открытий
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2014
- Город:Москва
- ISBN:978-5-17-083218-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание
Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.
Эволюция. Классические идеи в свете новых открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
18
Потому что разные участки ландшафта приспособленности имеют разную «проходимость»: одни похожи на ровные плато (там нейтральная эволюция идет быстро), другие — на лабиринт узких тропинок над пропастями (там нейтральные изменения накапливаются медленно). Подробнее об этом см. ниже.
19
Ответ такой: q = (F x × k)/(1 + F x × k), где q — частота аллеля А 2по прошествии X поколений, F — относительная приспособленность аллеля А 2по сравнению с конкурирующим аллелем А 1(в нашем случае F = 21/20 = 1,05), k = q 0/(1 − q 0), где q 0— частота аллеля А 2в начальный момент времени. В бесконечно большой популяции динамика q должна в точности соответствовать этой формуле. В маленьких популяциях соответствие будет неточным из-за генетического дрейфа.
20
Медленность элиминации слабовредных мутаций может пойти на пользу популяции. Ведь некоторые мутации, вредные здесь и сейчас, могут оказаться полезными в перспективе. Главное, чтобы это потенциальное преимущество успело реализоваться до того, как отбор элиминирует мутацию. Мы рассмотрим такие коллизии в следующих главах.
21
Читатели, знакомые с книгой «Рождение сложности», помнят, что этого предка звали Лукой (LUCA — Last Universal Common Ancestor, Последний Универсальный Общий Предок), что он жил свыше 3,5 млрд лет назад и представлял собой, скорее всего, сообщество примитивных микроорганизмов, уже имевших систему синтеза белка (аппараты транскрипции и трансляции, включая рибосомы) и обменивавшихся генами друг с другом. Биологи реконструируют строение Луки, сравнивая гены и белки современных организмов. Мы многого не знаем про Луку, но, как ни странно, нам известны кое-какие подробности из его личной жизни. Мы знаем, например, почти наверняка, что ближайшие потомки Луки разошлись по двум направлениям: одна их часть дала начало надцарству бактерий (Bacteria), а другая — надцарству архей (Archaea). До появления третьего и последнего надцарства — эукариот (Eukarya) — оставалось ждать еще 1,5 или 2 млрд лет.
22
Об одном из таких исследований мы рассказали в книге «Рождение сложности» в разделе «Пути эволюции предопределены на молекулярном уровне». На примере приспособления бактерий к антибиотикам удалось показать, что эволюция белков — в данном случае речь шла о белке, способном обезвреживать новый антибиотик, — может использовать лишь малую часть из множества теоретически возможных путей достижения цели. Каждая отдельная мутация должна повышать приспособленность, чтобы ее поддержал отбор. При этом положительный или отрицательный эффект многих мутаций, как выяснилось, зависит от того, какие мутации уже успели зафиксироваться ранее. Поэтому приобретение пяти мутаций, позволяющих белку эффективно справиться с новой функцией — защитой от антибиотика, — может идти не в любой последовательности из 120 возможных, а лишь несколькими, как бы «заранее предопределенными» путями ( Weinreich et al., 2006 ).
23
О причинах несовершенства организмов (таких как ловушки локальных оптимумов, «близорукость» естественного отбора, противоречивость требований оптимизации разных частей и подсистем организма, переменчивость среды и др.) написано очень много. Хороший обзор есть в книге Р. Докинза «Расширенный фенотип», недавно изданной на русском языке. Там есть специальная глава, посвященная этой теме; она называется «Пределы совершенства».
24
Напомним, что доминантный признак проявляется в фенотипе, если соответствующий генетический вариант (аллель) имеется у данного организма хотя бы в одном экземпляре. Рецессивный аллель проявляется, только когда у организма нет доминантного аллеля того же гена.
25
См. также раздел «Репертуар эволюционных решений ограничен» в главе 4.
26
У людей некоторые мутации в этом гене приводят к рыжеволосости. Анализ этого гена в ДНК, выделенной из костей неандертальцев, показал, что среди наших вымерших братьев по разуму тоже были рыжеволосые особи (подробнее см.: Марков, Наймарк, 2011 ).
27
Транскрипционные факторы (ТФ) — белки, регулирующие экспрессию(активность) генов. Каждый ТФ избирательно распознает определенную короткую последовательность нуклеотидов ДНК. Такая последовательность называется сайтом связыванияТФ. Найдя свой сайт связывания, ТФ прикрепляется к нему, что приводит либо к активизации, либо к подавлению транскрипции близлежащего гена. У эукариот в окрестностях большинства генов находится много сайтов связывания ТФ. Посмотрев, что это за сайты, мы можем определить, какими ТФ регулируется активность данного гена. Гены самих ТФ, конечно, тоже имеют сайты связывания и регулируются другими ТФ. На этом основаны генно-регуляторные сети, управляющие важнейшими жизненными процессами, включая развитие организма ( онтогенез).
28
Напомним, что доминантныйпризнак проявляется в фенотипе, если соответствующий генетический вариант (аллель) имеется у данного организма хотя бы в одном экземпляре. Рецессивныйаллель проявляется, только когда у организма нет доминантного аллеля того же гена. В случае с устойчивыми бабочками ситуация вполне понятная: при низкой концентрации вирусов для защиты достаточно единственной копии защитного гена (поэтому признак ведет себя как доминантный). При высокой концентрации вирусов вторая копия гена, не обеспечивающая защиты, уже начинает мешать, поэтому признак ведет себя как рецессивный.
29
Названия генов принято писать курсивом и маленькими буквами, чтобы их можно было отличить от кодируемых ими белков. Например, белок FOG-2 кодируется геном fog-2 .
30
Почему естественный отбор делает их именно такими — разговор отдельный; в книге «Рождение сложности» мы уже начали обсуждать эту тему; мы вернемся к ней в главе 8, а здесь лишь напомним, что в природе всегда есть место совершенствованию, это не идеальный священный текст.
31
РНК-интерференция — метод отключения генов, основанный на использовании одного из защитных механизмов клетки. Вводят в клетку двухцепочечную РНК с такой же последовательностью нуклеотидов, как у целевого гена. Клетка «думает», что в нее проник вирус, и начинает уничтожать все РНК с такой последовательностью нуклеотидов — в том числе матричные РНК, считанные с интересующего нас гена.
32
О механизмах развития несовместимости мы поговорим в главе 6, посвященной видообразованию.
33
Мы подробнее поговорим о дупликации генов в главе 5.
34
О недостатках самооплодотворения по сравнению с нормальным перекрестным оплодотворением мы поговорим в следующей главе.
Читать дальшеИнтервал:
Закладка: