Михаил Бухар - Популярно о микробиологии
- Название:Популярно о микробиологии
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2012
- Город:Москва
- ISBN:978-5-91671-198-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Бухар - Популярно о микробиологии краткое содержание
Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Популярно о микробиологии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Таким образом, упрощенно можно представить процесс фотосинтеза как перенос водорода от молекулы воды к молекуле углекислого газа с образованием углеводов. В определенных условиях и при участии специального фермента — гидрогеназы — из активированного водорода может быть получен молекулярный водород, а не углеводы. Накопленный таким образом водород можно использовать как топливо (по энергоемкости этот химический элемент в пересчете на единицу веса превосходит нефть в 3,3 раза). Если бы такой процесс удалось осуществить с помощью солнечной энергии, то мы бы приобрели практически неограниченные запасы универсального топлива.
По существу, «водородный» путь использования солнечной энергии может быть представлен двумя реакциями:
1) 2H 2O солнечная энергия, хлорофилл→ 2H 2 + О 2;
2) 2H 2 + O 2 → 2H 2O + энергия.
В первой реакции солнечная энергия используется для получения водорода, а во второй энергия, выделяющаяся при его сгорании, может быть реализована в виде топлива с последующим превращением в другие виды энергии. Из приведенных уравнений видно, что такой путь ее получения не нуждается в дополнительном кислороде, так как этот химический элемент, необходимый для сжигания водорода, образуется как побочный продукт получения водорода. Кроме того, водородная энергетика обладает огромным преимуществом с точки зрения экологии, поскольку единственным продуктом сгорания водорода является… вода! Именно полученную в результате такого процесса воду пили американские космонавты во время полета на Луну.
«Но при чем здесь микроорганизмы?» — спросите вы. Дело в том, что в клеточных мембранах бактерий обнаружен пурпурный пигмент, способный так же, как и хлорофилл, улавливать солнечную энергию.
Этот пигмент — бактериохлорофилл — удивительное вещество сродни хлорофиллу. Об этом говорит и его название. Поскольку он является частью микробной биомассы, бактериохлорофилл легко накопить в довольно больших количествах. Процесс его выделения не представляет больших трудностей. Однако даже выделенный в «мягких», как принято говорить, условиях, нативный бактериохлорофилл может осуществлять интересующий нас процесс непродолжительное время. Оторванный от своей «матери-бактерии», он, подобно мифическому Антею в железных объятиях Геракла, довольно быстро теряет силы под действием различных повреждающих факторов. Следовательно, необходимо не только получить и выделить этот важный продукт бактериального биосинтеза, но и как-то стабилизировать, задержать его разложение. Надо сказать, что опыт такого рода работ в микробиологии уже имеется. Есть даже такое понятие, как иммобилизация. И приложимо оно ко многим сторонам микробиологической технологии. Так, есть иммобилизованные ферменты, иммобилизованные субклеточные частицы и даже иммобилизованные микробные клетки.
Попытаемся очень схематично объяснить суть процесса иммобилизации и возникающей при этом стабильности. Выделенная для иммобилизации структура обычно имеет одно или несколько слабых мест, с которых начинается процесс распада, деструкции.
Если эти места каким-то образом защитить, то стабильность, естественно, повысится. В этом суть одного из направлений иммобилизации: прикрыв активные участки структуры каким-нибудь инертным веществом, мы в целом сохраняем ее от губительного воздействия нежелательных деструктивных факторов, будь то какие-то активные химические вещества или в простейшем случае кислород. Естественно, что при этом защита, или экранизация не должна затрагивать функциональные группы стабилизируемой структуры, фермента или даже целой клетки.
Не вдаваясь в детали процесса иммобилизации и особенностей иммобилизованных структур, скажем только, что их стабильность возрастает в десятки раз, а время полужизни, т. е. время, в течение которого биохимическая активность таких структур уменьшается на 50 %, достигает значительных величин, измеряемых месяцами или даже годами.
Такая модифицированная система обладает большой стабильностью и вместе с фотосинтетическим аппаратом может служить источником получения фотоводорода.
Дальнейшее использование водорода практически не отличается от применения традиционных видов топлива и связано с переходом химической энергии в тепловую, тепловой — в механическую и механической — в электрическую. Такой многостадийный путь приводит к довольно низкому КПД высокоэффективного топлива.
Нельзя ли каким-либо образом миновать промежуточные стадии и осуществить прямое превращение химической энергии водорода в электрическую? Собственно говоря, одностадийный переход химической энергии в другие ее виды постоянно осуществляется на наших глазах (и с достаточно высоким КПД!) биохимической «машиной» клетки в результате проведения последовательных скоординированных реакций, протекающих с участием большого числа ферментов.
Попытки осуществить этот процесс в технических устройствах привели к созданию топливных элементов — устройств, в которых осуществляется прямое преобразование химической энергии в электрическую. В топливном элементе отсутствует промежуточная стадия преобразования химической энергии в тепловую, и поэтому его КПД может достигать 65–70 %.
Топливные элементы отличаются безотходностью, автономностью и компактностью. Кроме того, их преимуществом являются бесшумность и возможность использования различных видов топлива, таких как водород, метан, легкие углеводороды, метанол, этанол и др. С помощью топливных элементов можно создавать установки различной мощности, изменяя число рабочих модулей. Однако они имеют ряд технических несовершенств, что сдерживает их применение несмотря на огромные преимущества перед другими способами получения электрической энергии.
Одной и, может быть, самой существенной трудностью, стоящей на пути внедрения топливных элементов, является создание микропористого материала, способного обеспечить межфазовый контакт между газом, жидкостью и твердым телом, в зоне которого, собственно, и происходит обмен электронов, или так называемое холодное горение.
Создание таких структур — довольно трудное дело, но и, уже созданные, они зачастую теряют свои свойства в процессе эксплуатации. Кстати, именно этим объясняется короткое время их функционирования.
Между тем подобные структуры имеются в микробной, как, впрочем, и в любой другой живой клетке. Возникает простая мысль использовать их при конструировании топливных элементов. Эти биологические структуры — биологические мембраны обладают одновременно и гидрофильными, и гидрофобными свойствами. В них не происходит замокания гидрофобных участков в процессе эксплуатации, что обеспечивает надежность и длительность их функционирования.
Читать дальшеИнтервал:
Закладка: