Михаил Бухар - Популярно о микробиологии
- Название:Популярно о микробиологии
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2012
- Город:Москва
- ISBN:978-5-91671-198-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Бухар - Популярно о микробиологии краткое содержание
Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Популярно о микробиологии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Более того, если бы удалось решить вопросы управления проницаемостью таких мембран (что и происходит в живой клетке), то на базе полупроницаемых мембран можно было бы создавать системы, аналогичные гибким технологическим системам в промышленности. Пока методов работы с биомембранами не разработано, ведь сначала должны быть предложены способы их выделения из нативных клеток, а также стабилизации. Исследования пленочного роста микроорганизмов позволили обнаружить не только удивительные механические свойства этих пленок (об этом упоминалось в главе 5), но и особенности контактов микроорганизмов друг с другом. Это позволило ученым из Массачусетского технологического университета увеличить мощность топливных элементов в несколько раз. При этом пленка функционировала как единая токопроводящая система, объединяющая индивидуальные потоки электронов, производимые отдельными клетками.
Однако уже работают мембраны — аналоги живых мембран. Можно ли отнести эти технологии к биотехнологии? И да и нет. Но в конце концов неважно, как мы назовем эти новейшие технологии разделения, — главное, что они используют принципы, близкие к биологическим, и на основании этого (хотя и условно) могут быть отнесены к биотехнологическим процессам.
Помимо возможного использования биомембран реальный интерес представляет применение внутриклеточных органелл микробной клетки, в частности, магнитосом. По сути они представляют собой маленькие магнитики, образующиеся внутри бактериальной клетки. В последнее время возникла потребность в магнитоуправляемых частицах для использования в диагностике и при лечении некоторых заболеваний.
Так, присоединение к антителам магнитных частиц вместо молекул флуоресцентных красителей примерно в 100 (!) раз повышает чувствительность методов выявления специфических белков, используемых для диагностики.
Кроме того, магнитные частицы применяются для гипертермии. Суть этого метода в том, что микромагниты можно с помощью магнитов или под действием магнитных полей направлять в нужный орган и удерживать там, а облучая их высокочастотным электромагнитным полем, вызывать локальный точечный нагрев, приводящий к гибели окружающих магнит клеток раковой опухоли.
Производство магнитных частиц одинаковой формы и размера — достаточно сложная задача, особенно если они измеряются нанометрами. И это только часть задачи: нужно еще покрыть каждую частицу белковой или углеводной оболочкой, к которой можно будет «привязать» химическими связями антитело.
Между тем есть другой, микробиологический путь получения таких магнитных частиц. Известно, что некоторые бактерии (такие как, например, Magnetospirillum magneticum ) способны извлекать железо из окружающей среды и синтезировать магнитные частицы, причем со значительно меньшим разбросом по величине и форме, чем при физико-химическом синтезе, и, кроме того, уже покрытые биологической мембраной. Вдобавок ко всему возможности генетической инженерии позволяют осуществлять синтез магнитных частиц с уже прикрепленными к ним антителами.
Таким образом, биотехнология позволяет получать магнитные частицы с различными антителами и использовать их для точной «адресной» доставки лекарств, радионуклидов или «тепловых бомб» к пораженным органам и даже клеткам и осуществить наконец мечту Пауля Эрлиха о «магической пуле».
Биотехнология может умело извлекать пользу не только из различных свойств микроорганизмов, но из самого факта их широкого распространения.
Рассмотрим один из таких примеров. Известно, что растения в принципе способны выдерживать снижение температуры до -6 °C. Однако в действительности серьезные поражения растительных тканей листьев, например, апельсиновых деревьев наступают при минусовых температурах, близких к нулю. Дело в том, что на поверхности листьев образуются кристаллы льда, разрушающие их ткань. Микробиологи из Калифорнийского и Колорадского университетов, изучая вопросы морозоустойчивости цитрусовых, установили, что центрами кристаллообразования льда служат бактерии Erwinia herbicola и Pseudomonas viringa . Если бы удалось убрать с поверхности листьев эти бактерии, то удалось бы сократить довольно значительные потери от заморозков. Ученые выделили вирусы, которые, интенсивно размножаясь, лизируют указанные бактерии, и растения переживают период похолодания со значительно меньшими поражениями, конечно, если температура не опускается ниже -6 °C. По расчетам ученых, можно избежать ежегодных миллиардных убытков при использовании этих вирусов. Обработка ими растений уже широко применяется.
Интересно использование в качестве инсектицида мицелия грибов Mefarhizium anisopliae . Он продуцирует вещества, привлекающие насекомых. Поедая мицелий, они заражаются спорами гриба, который, прорастая в теле насекомых, убивает их. Это метод имеет огромные преимущества перед традиционными инсектицидами как в экономическом, так и в экологическом аспектах.
Заканчивая эту главу, следует еще раз подчеркнуть, что биотехнология, и это очевидно, в ближайшее время окажет серьезное воздействие на решение многих технических проблем и на проведение технологических процессов.
Изумительное совершенство и тончайшая согласованность работы уникальных и, увы, пока неповторимых механизмов получения энергии, кодирования и декодирования информации, проведения сложнейших химических синтезов с участием созданных для этой цели катализаторов-ферментов позволяет микробной клетке опережать даже новейшие достижения энергетики, вычислительной техники и химической технологии.
В приведенных нами примерах использования биотехнологических приемов так или иначе переплетаются проблемы экономики и энергетики, энергетики и экологии, экологии и экономики. Поневоле напрашивается вывод, что именно биотехнология является тем мечом, с помощью которого можно разрубить гордиев узел, в который эти проблемы переплелись в современном мире.
Пройдет еще несколько лет, и во многих областях техники появятся новинки, в основе которых будут лежать биологические системы. Мы стоим на пороге эпохи биотехники и биотехнологии и одной ногой уже через него перешагнули.
Микробиология — молодая наука. Она описывает и изучает мир микроорганизмов немногим более полутора веков, начиная с великих открытий Л. Пастера. Человечеству предстоит раскрыть еще много тайн и секретов: ведь сегодня мы можем объяснить еще далеко не все свойства и особенности микроорганизмов. Необходимо более тщательно изучать их устройство, и мы не только получим в руки надежные механизмы управления жизнедеятельностью микробов, но и откроем, возможно, новые, неизвестные нам законы, по которым Природа создала третье царство — царство микроорганизмов. И если в разгадке этих проблем захотят принять участие некоторые из наших читателей, то это и будет лучшей наградой автору.
Читать дальшеИнтервал:
Закладка: