Анатолий Молчанов - Население Земли как растущая иерархическая сеть
- Название:Население Земли как растущая иерархическая сеть
- Автор:
- Жанр:
- Издательство:Array SelfPub.ru
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Молчанов - Население Земли как растущая иерархическая сеть краткое содержание
Население Земли как растущая иерархическая сеть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Утверждение «…остается неизменной пропорция между относительным изменением численности и относительным изменением времени» есть, по сути, постулат степенной зависимости численности от времени. [1]
Следовательно, вместо поиска ответа на вопрос, почему численность населения мира росла не по экспоненциальному, а по степенному закону, С.П. Капица просто постулирует такой рост. Обычно, когда хотят по настоящему обосновать сделанный выбор, стремятся к максимальной ясности.
Здесь же все наоборот: термины, которые автор взял из неравновесной термодинамики, вместе с необходимыми частями речи собираются в предложения, из предложений складывается абзац. И полученный таким образом текст не только ничего не проясняет, но и вообще лишен всякого смысла.
Все предложенное С.П. Капицей «обоснование» применимости причинного степенного закона для объяснения гиперболического роста населения мира можно расшифровать и сократить до одного предложения:
В основе модели лежит предположение о степенной зависимости численности человеческой « популяции » от времени (просто постулируется рост человечества по степенному, причинному, самодостаточному закону, по которому не растет ни одна популяция в природе, – только и всего!), что позволяет говорить о масштабной инвариантности (неизвестно чего) и об автомодельности развития (что это означает − не понимает никто!).
Кроме того, точно такое же «обоснование» годится и для такого «сложного, многофакторного процесса развития системы, обладающего, однако, статистической стационарностью…», как, например, рост колонии пчел или термитов.
В своих работах по теоретической демографии С.П. Капица предлагал самые разнообразные объяснения аномальному гиперболическому росту населения мира: от взаимодействия населенных пунктов с характерной численностью в 67 тыс. человек до нелокального информационного взаимодействия между членами человеческой популяции. Ответа на вопрос: в чем истинная причина роста человечества по закону гиперболы? – у него, очевидно, нет.
Если исходить из предположения о том, что гиперболический рост численности человечества был обусловлен причинным законом с простой преддетерминацией, то в уравнении роста должен присутствовать и линейный член: dN/dt = αN + βN 2, что будет обосновано нами чуть позже. Если же такого члена нет и рост изначально предполагается гиперболическим, то мы неизбежно приходим к тем противоречиям, о которых говорили ранее.
Первые гоминиды мало отличались от своих собратьев человекообразных обезьян, живших с ними в одно и то же время и умножавших свою численность по закону Мальтуса. Поэтому логично предположить, что рост численности первых популяций рода Homo был экспоненциальным, хотя и чрезвычайно медленным.
С.П. Капица считает, что рост численности гоминид на первом этапе продолжительностью 2.8 млн лет был линейным. Во что поверить совершенно невозможно, поскольку в таком случае суммарный прирост численности популяций гоминид, предков современного человека, на протяжении 2.8 млн лет предполагается постоянным, не зависящим от их растущей численности.
А на втором этапе длительностью 1.6 млн лет он полагает, что этот рост был уже чисто гиперболическим. Почему С.П. Капица не включает линейный член в свое уравнение? Дело здесь не только в том, что в этом случае может быть нарушено соответствие с демографическими данными, указывающими на гиперболический рост.
Причина в том, что если допустить присутствие такого пусть даже и «сколь угодно малого» члена в уравнении роста, то сразу же придется распрощаться с бессмысленным самоподобием роста, его масштабной инвариантностью, а также с автомодельностью развития – понятиями характерными для физических процессов, которые описываются простыми масштабно-инвариантными законами.
Действительно, решения уравнения dN/dt = αN + βN 2, в отличие от решений уравнения dN/dt = βN 2, имеют встроенный масштаб времени [118].
Тут может быть такое возражение: если членом αN на завершающих этапах роста можно пренебречь, то для этих этапов закон роста можно считать степенным со всеми необходимыми для физикалистской интерпретации гиперболического роста следствиями.
Ответ здесь такой: учитывая, что Мир-система ни в какие времена не была единым информационном полем, а информационная связность человечества на протяжении всей человеческой истории всегда только возрастала, квадратичный член βN 2мог начать оказывать существенное влияние лишь на завершающих этапах роста, т. е. в течение последних двух-трех столетий. (На самом деле, и мы впоследствии это покажем, линейным членом нельзя пренебречь ни на каком этапе роста.)
Кроме того, не следует забывать о циклах эволюции и истории, которые вводятся в рассмотрение С.П. Капицей. Все время эволюции, начиная от момента -1.6 млн лет, делится им на одиннадцать периодов равной (в логарифмическом масштабе) длительности с неолитом посередине.
В течение каждого такого периода, длительность которого в три раза меньше предыдущего, численность также возрастала в три раза. Но такая цикличность возможна лишь при степенном, гиперболическом росте; и если на последних циклах линейным членом может быть и можно как-то пренебречь, то рост до неолита, да и в первые несколько тысячелетий после начала неолита, когда человечество не представляло собой системы ни в каком смысле слова, сделать это, очевидно, нельзя, и рост здесь, если исходить из представления о законе роста как о ПОС между численностью и приростом, должен быть экспоненциальным.
В таком случае ни о какой цикличности роста и демографическом императиве до начала новой эры говорить не приходится. Поэтому уравнение роста с дополнительным линейным членом в правой части С.П. Капице и не подходит, поскольку находится в антагонистическом противоречии с принципом демографического императива и цикличностью исторического развития.
Обоснование этой цикличности – вот та проблема, которая всегда волновала С.П. Капицу. Границы циклов в первом приближении были размечены еще до него историком И.М. Дьяконовым; проблема здесь в том, почему циклов примерно 10–15 и почему они расположены на шкале исторического времени так, как расположены. В чем глубинная природа цикличности?
Показатель сжатия исторического времени (знаменатель прогрессии сжимающихся исторических циклов) С.П. Капица принимает сначала равным числу Эйлера. Его значение е = 2.718… он почему-то считает наиболее подходящей естественной мерой такого сжатия, хотя число Эйлера – основание натуральных логарифмов – в чистом виде никогда не встречается ни в одном законе естествознания.
Читать дальшеИнтервал:
Закладка: