Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома

Тут можно читать онлайн Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Лаборатория знаний, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мусорная ДНК. Путешествие в темную материю генома
  • Автор:
  • Жанр:
  • Издательство:
    Лаборатория знаний
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-906828-62-0
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома краткое содержание

Мусорная ДНК. Путешествие в темную материю генома - описание и краткое содержание, автор Несса Кэри, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Расшифровав генетический код, ученые обнаружили, что лишь 2% ДНК несут информацию о белках. А для чего же тогда нужны оставшиеся 98%? Поначалу генетики решили, что это мусор, хлам. Однако совсем недавно стало ясно — все гораздо сложнее, и именно эти «мусорные» области ДНК определяют сложность человеческого организма, его возможные болезни и даже — скорость старения! Здесь — ключи к пониманию эволюции и сущности самой жизни.

Сегодня множество ученых в самых разных лабораториях мира пытаются проникнуть в тайны «мусорной» ДНК, этой темной материи нашего генома. Об их последних результатах — в увлекательной книге английского генетика Нессы Кэри.

Мусорная ДНК. Путешествие в темную материю генома - читать онлайн бесплатно ознакомительный отрывок

Мусорная ДНК. Путешествие в темную материю генома - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Несса Кэри
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По меньшей мере одна важная стадия этого процесса — выработка нерастворимых бляшек в мозгу (их можно обнаружить при аутопсии). Эти бляшки состоят из неправильно сложенных белков. Главный среди них — бета-амилоид. Он синтезируется, когда фермент BACE1 разрезает более крупный белок. Одна из длинных некодирующих РНК вырабатывается на том же участке генетической последовательности, что и BACE1, только на противоположной нити ДНК (вспомним Xist и Tsix ).

Эта длинная некодирующая РНК и стандартная информационная РНК фермента BACE1 связываются друг с другом, что делает BACE1-РНК более стабильной, и она остается в клетке дольше. А потому клетка может синтезировать больше копий белка BACE1. Это приводит к росту производства бета-амилоида, важнейшего игрока в процессе формирования бляшек 31.

Похоже, что уровень содержания этой длинной некодирующей РНК повышается в мозгу пациентов, страдающих болезнью Альцгеймера. Впрочем, эти данные трудно интерпретировать. Возможно, такое повышение — всего лишь следствие общей повышенной экспрессии в этой области. Вспомните аналогию, которую мы приводили выше: чем больше бревен вы пилите, тем больше опилок получается. Ученые нашли способ уменьшить экспрессию лишь этой длинной некодирующей РНК у модельных мышей, часто проявлявших альцгеймеровскую патологию. И подавление этой длинной некодирующей РНК привело к уменьшению содержания белка ВАСЕ1 и содержания бета-амилоидных бляшек! Вот вам подтверждение идеи, согласно которой эта длинная некодирующая РНК — одна из причин этой губительной болезни 32.

Длинные некодирующие РНК могут влиять не только на центральную нервную систему. Нейропатическая боль — состояние, при котором пациент испытывает неприятные, болезненные ощущения даже при отсутствии физических раздражителей. Ее причиной служит аномальная электрическая активность нервов, по которым сигналы от периферии тела передаются в центральную нервную систему (в головной и спинной мозг). Это заболевание бывает очень мучительным, причем обычные болеутоляющие вроде аспирина или парацетамола почти не помогают. Зачастую неясно, почему нервы ведут себя столь аномальным образом. Авторы одного из недавних исследований предполагают: в некоторых случаях причиной может стать рост содержания длинной некодирующей РНК, способной изменять уровни экспрессии в одном из таких электрических каналов. Она связывает молекулу информационной РНК, кодирующую данный канал, тем самым меняя ее стабильность, а, значит, и количество вырабатываемого белка 33.

Сейчас выявляются все новые и новые типы заболеваний, одной из причин которых (как заявляют исследователи) служат длинные некодирующие РНК 34. Однако по-прежнему ведутся споры о том, насколько важную роль играют эти длинные некодирующие РНК и насколько активно они функционируют. Могут ли они играть такую же существенную роль в организме, как белки? Вероятно, на индивидуальном уровне ответ будет, как правило, отрицательным, если только мы не имеем дело с такой явно жизненно важной молекулой, как Xist. Но, возможно, не имеет особого смысла рассматривать влияние отдельных длинных некодирующих РНК.

Недавно ученые мимоходом выдвинули такую гипотезу: «Существует немалая вероятность, что многие из этих длинных транскриптов в лучшем случае лишь слегка корректируют процессы управления геномом, подталкивая или искажая их, но при этом не являясь непосредственными выключателями процессов» 35. Однако сложность и гибкость описываемых механизмов зависит главным образом, метафорически говоря, не от черно-белой картины, не от включения/выключения динамиков, а от тонких градаций громкости звука, от оттенков серого. Возможно, с биологической точки зрения мы очень многим обязаны этим подталкиваниям и искажениям.

Глава 9. Раскрашивая темную материю

В биологии за вопросом «Что делает какой-то объект?» почти всегда следует другой: «Как он это делает?». Мы знаем, что такое длинные некодирующие РНК, и мы знаем по меньшей мере кое-какие их функции: эти РНК регулируют экспрессию генов. Отсюда вытекает логичный вопрос: каким образом они это проделывают?

Не ждите одного общего ответа. Человеческий геном производит многие тысячи длинных некодирующих РНК. Вряд ли все они действуют одинаково. Однако мы уже начали выявлять здесь некоторые единые темы.

Одна из наиболее важных тем имеет отношение к свойству, с которым мы уже сталкивались в главе 6, обсуждая центромеры и их роль в делении клеток. Вновь обратившись к рис. 6.3, вспомним, что ДНК наших клеток обернута вокруг групп, в каждой из которых содержится по 8 особых белков — гистонов. Мы рассматривали гистоны лишь как «упаковочные» белки, однако на самом деле они выполняют гораздо более сложные задачи. Наши клетки способны модифицировать гистоны или саму ДНК. Они осуществляют это, добавляя к ним небольшие химические группы. Эти химические прибавления не изменяют саму нуклеотидную последовательность гена. Ген по-прежнему будет кодировать ту же самую молекулу РНК и тот же самый белок (если речь идет о гене, кодирующем белок). Однако такие модификации меняют вероятность того, что данный ген будет экспрессироваться. Пристраиваемые группы сами служат участками, к которым прикрепляются другие белки. Эти модификации — первичные участки прикрепления, на основе которых постепенно выстраиваются большие белковые комплексы, которые в конечном счете и выключают (или включают) ген.

Такие изменения в ДНК и белках, на которые она влияет, называются эпигенетическими модификациями 1. «Эпи-» происходит от греческого слова, означающего «на», «в», «в добавление к», «точно так же, как». Подобные модификации — своего рода добавление к генетической последовательности. Наиболее распространенная из них (все остальные распространены гораздо меньше) наблюдается на тех участках, где за нуклеотидным основанием Ц следует основание Г. Такая последовательность называется ЦГ-последовательностью. Клеточные ферменты способны добавить тут модифицирующую — здесь метильную — группу. Она пристраивается к основанию Ц. Метильная группа состоит всего из одного атома углерода и трех атомов водорода. Она имеет очень маленькие размеры. Прикрепить такую группку на основание Ц — то же самое, что прикрепить листок клевера на боковую часть цветка подсолнуха.

Если на данном участке ДНК много ЦГ-мотивов, он имеет много мест, к которым способна эпигенетически присоединяться метильная группа. Это привлекает белки, подавляющие экспрессию соответствующего гена. В экстремальных случаях, когда имеется множество ЦГ-мотивов, находящихся поблизости друг от друга, метилирование ДНК может оказывать чрезвычайно сильное и глубокое воздействие. В сущности, при этом ДНК меняет форму и соответствующий геи полностью выключается. Более того, он может отключаться не только в данной клетке, но и во всех дочерних, создаваемых ею в результате деления. В неделящихся клетках (скажем, нейронах мозга) такие схемы метилирования ДНК порой складываются еще в тот период, когда мы находимся в утробе матери. Многие из этих схем будут продолжать действовать и через сто лет, если нам удастся протянуть так долго.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Несса Кэри читать все книги автора по порядку

Несса Кэри - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мусорная ДНК. Путешествие в темную материю генома отзывы


Отзывы читателей о книге Мусорная ДНК. Путешествие в темную материю генома, автор: Несса Кэри. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x