Джошуа Ганс - Искусственный интеллект на службе бизнеса

Тут можно читать онлайн Джошуа Ганс - Искусственный интеллект на службе бизнеса - бесплатно ознакомительный отрывок. Жанр: Деловая литература, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусственный интеллект на службе бизнеса
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-881-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джошуа Ганс - Искусственный интеллект на службе бизнеса краткое содержание

Искусственный интеллект на службе бизнеса - описание и краткое содержание, автор Джошуа Ганс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Прогнозирование – одна из составляющих искусственного интеллекта. На множестве практических примеров авторы рассказывают, как прогнозирование влияет на стратегии бизнеса. Книга поможет сориентироваться в преимуществах технологии и понять, что может значить искусственный интеллект для вас.
На русском языке публикуется впервые.

Искусственный интеллект на службе бизнеса - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект на службе бизнеса - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джошуа Ганс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Появится много и других связанных с суждением профессий, но, скорее всего, менее квалифицированных, чем те, что заменил ИИ. Прогнозирование служит ключевым навыком в большинстве ныне существующих специальностей. Например, в числе прочих, – врачи, финансовые аналитики, юристы. Использование машинного прогноза в навигации привело к снижению доходов высокооплачиваемых лондонских таксистов и увеличению количества низкооплачиваемых водителей Uber, и аналогичную тенденцию можно ожидать в сфере медицины и финансов. С автоматизацией прогностической части задач к ним привлекут больше сотрудников с узкоспециализированными навыками суждения. Когда прогноз перестанет быть ограничивающим фактором, наверняка возрастет спрос на дополняющие его более распространенные навыки, что приведет к увеличению числа рабочих мест, но одновременно к снижению зарплаты.

У человека есть одно важное отличие от ИИ: ПО масштабируется, а люди – нет. Как только ИИ превзойдет человека в выполнении конкретной задачи, число рабочих мест быстро сократится. Но за последующие несколько лет люди найдут чем заняться, поскольку появятся новые профессии. Хотя тех, кто потеряет работу и будет ждать появления новоиспеченных специальностей, это вряд ли утешит. Рецессию в результате применения ИИ исключать нельзя, даже если свободная торговля с Роботландией не повлияет на количество рабочих мест в долгосрочной перспективе.

Усугубится ли проблема неравенства?

Работа – это одно, а зарплата – совсем другое. В торговле конкуренция вызывает снижение цен. Если же конкуренция возникла на рынке труда, то снижается зарплата. В случае открытия торговли с Роботландией роботы конкурируют с человеком за выполнение задач, следовательно, оплата сокращается. Если эти задачи входят в ваши обязанности, ваш доход может снизиться, а конкуренция вырастет.

Как и в международной торговле, на автомобильном рынке будут свои победители и проигравшие. Профессии сохранятся, но некоторым достанутся менее интересные обязанности, чем сейчас. Если вам известны плюсы свободной торговли, то оцените и преимущества прогностических машин. Ключевой стратегический вопрос не в том, принесет ли ИИ преимущества, а в том, как они будут распределяться.

Поскольку инструменты ИИ могут заменить «высшие» навыки – а именно мыслительные способности, – многие обеспокоены тем, что, хотя профессии и останутся, оплачиваться они станут скромнее. Например, Джейсон Фурман в бытность председателем Совета экономических консультантов президента США Барака Обамы выразил свою озабоченность следующим образом:

«Меня волнует не то, что с приходом искусственного интеллекта возможны большие перемены, – тревожит другое: в основном все будет так же, как в минувшие десятилетия. Считается бессмысленным бояться, что роботы отберут у нас работу, но это не отменяет беспокойства, что мы останемся на своих рабочих местах по единственной причине – согласимся выполнять ее за более низкую зарплату» [170].

Если доля труда машин будет увеличиваться, то доход рабочих снизится, а владельцев ИИ – возрастет.

В бестселлере «Капитал в XXI веке» Томас Пикетти [171]подчеркнул, что за минувшие десятилетия доля труда в национальном доходе (США и других стран) уменьшилась в пользу доли капитала. Эта тенденция настораживает, так как влечет за собой повышение неравенства. Главный вопрос в том, сгладит ее ИИ или усугубит. Если он станет новой, эффективной формой капитала, то доля капитала в экономике, вероятно, продолжит расти за счет труда.

Для такой проблемы простых решений не существует. К примеру, предложенный Биллом Гейтсом налог на роботов снизит неравенство, но будет уже не так выгодно покупать их. Поэтому компании станут меньше инвестировать в роботов, производительность замедлится, и в итоге мы все равно обеднеем.

Стратегический компромисс очевиден: у нас есть политика урегулирования неравенства, но за счет вероятного снижения общего дохода.

Еще одна тенденция, ведущая к неравенству, – смещение технического прогресса в пользу квалифицированного труда. Оно несоразмерно повышает заработок высокообразованных людей и может снизить зарплату малообразованных. Появление компьютеров и интернета стало основной причиной различий в оплате труда в США и Европе за последние 40 лет. Как сформулировали экономисты Клаудиа Голдин и Лоуренс Кац, «образованные люди с развитыми врожденными способностями быстрее осваивают новые сложные инструменты» [172]. Нет смысла надеяться, что с ИИ все получится иначе: человеку с хорошим образованием проще приобрести новые навыки. И если необходимые для работы с ИИ навыки станут часто меняться, образованные люди получат колоссальные преимущества.

Дополнительные знания для успешного применения ИИ понадобятся по многим причинам. Например, разработчику функции вознаграждения необходимо одновременно знать цели организации и способности машин. Они эффективно масштабируются, и, если это дефицитный навык, лучшие разработчики извлекут прибыль из миллионов или миллиардов машин.

Именно потому, что сейчас связанные с ИИ навыки достаточно редки, процесс обучения людей и компаний будет дорогостоящим. В 2017 году более тысячи из семи тысяч студентов Стэнфордского университета поступили на вводный курс машинного обучения, такая же тенденция прослеживается практически везде. Но выпускники Стэнфорда и других подобных учебных заведений – лишь небольшая часть рабочей силы. Основная доля современных специалистов обучалась десятки лет назад и, следовательно, нуждается в переподготовке и повышении квалификации. Наша производственная система обучения для этого не годится. Компаниям не стоит надеяться, что система изменится достаточно быстро и обеспечит всех работниками для успешной конкуренции в эпоху ИИ. Изменить политику не так просто: улучшение образования обходится дорого и кто-то должен за него заплатить – значит, либо повысят налоги, либо компании или студенты станут оплачивать обучение. Даже если такие расходы покрыть несложно, не все люди среднего возраста захотят вернуться к обучению. Больше всего от смещения технического прогресса в пользу квалифицированного труда пострадают те, кто не готов к непрерывному образованию.

Отойдет ли весь контроль нескольким гигантским компаниям?

Развитием ИИ обеспокоены не только частные лица. Многие компании опасаются отстать от конкурентов в безопасности и использовании ИИ, отчасти из-за связанной с ним экономии за счет роста масштабов производства. Больше клиентов, следовательно, больше данных, что повышает точность прогнозов, а это, в свою очередь, привлекает еще больше клиентов, – и так по кругу. При определенном стечении обстоятельств прорыв в производительности ИИ конкурентам уже не нагнать. В нашем мысленном эксперименте с прогнозированием покупок Amazon (см. главу 2) масштаб и преимущество первого хода с большой вероятностью приводят к такой прогностической точности, что конкуренты навсегда остаются далеко позади.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джошуа Ганс читать все книги автора по порядку

Джошуа Ганс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект на службе бизнеса отзывы


Отзывы читателей о книге Искусственный интеллект на службе бизнеса, автор: Джошуа Ганс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x