Джон Барри - Испанка. История самой смертоносной пандемии
- Название:Испанка. История самой смертоносной пандемии
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2021
- Город:Москва
- ISBN:978-5-9614-6600-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Барри - Испанка. История самой смертоносной пандемии краткое содержание
В книге историка Джона Барри читатель обнаружит много знакомого. Ложь и трусость политиков и чиновников, героизм и отчаянный энтузиазм ученых и врачей, страх и паника простых людей — все это приметы и нынешнего времени. Вы увидите, как мир тогда оказался не готов вести одновременно две войны — друг с другом и со смертоносным вирусом, убивавшим, как и вражеские пули, в первую очередь самых молодых и сильных.
Но эта книга еще и гимн науке, гимн медицине: она представляет собой не только яркое и захватывающее описание борьбы с пандемией, но и галерею портретов людей науки, медиков, политиков. В будущем человечеству еще не раз предстоит столкнуться с неизвестными болезнями, поэтому необходимо хорошо усвоить уроки прошлого, чтобы не повторять прежних ошибок.
Испанка. История самой смертоносной пандемии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В подавляющем большинстве случаев жертвы гриппа полностью поправляются в течение десяти дней. Отчасти поэтому, а отчасти в связи с тем, что его легко спутать с обычной простудой, грипп редко вызывает у людей беспокойство.
Но если вспышка и не смертоносна в целом, вирус все равно почти всегда кого-нибудь убивает — даже самые «щадящие» его разновидности. Согласно современным данным Центров по контролю и профилактике заболеваний в США, грипп в среднем убивает 36 тысяч американцев в год.
Но грипп не только эндемическая болезнь — то есть болезнь, которая все время циркулирует среди населения. Она может приобретать форму эпидемий и пандемий. А вот пандемии могут стать смертоносными — иногда во много раз более смертоносными, чем эндемические заболевания.
На протяжении всей истории человечества время от времени случались пандемии гриппа — как правило, несколько раз за столетие. Пандемии вспыхивают, когда возникают новые вирусы гриппа. А природа вируса гриппа делает появление новых вирусов неизбежным.
Сам по себе вирус — это всего лишь мембрана, своего рода оболочка, в которую завернут геном: восемь генов, определяющих, что это за вирус. Обычно (но не всегда) вирус имеет сферическую форму, диаметр которой не превышает 1/10 000 миллиметра. Выглядит вирус гриппа как одуванчик: сфера покрыта отростками двух типов.
Эти отростки и обеспечивают механизм вирусной атаки. Эта атака и оборонительная война, которую ведет против вируса организм, — типичные примеры того, как контуры и формы определяют исход процесса.
Отростки, напоминающие соцветия брокколи, состоят из гемагглютинина. Когда вирус сталкивается с клеткой, гемагглютинин соприкасается с молекулами сиаловой кислоты, которые выступают над поверхностью клеток дыхательных путей.
Формы гемагглютинина и сиаловой кислоты соответствуют друг другу подобно ключу и замку, и гемагглютинин «связывается» с сиаловой кислотой, со своим «рецептором», входя в него как рука в перчатку. Когда вирус усаживается на клеточную мембрану, еще больше гемагглютининовых шипов связываются с еще большим количеством молекул сиаловой кислоты: вирус ведет себя как пиратский корабль, с которого на корабль-жертву забрасывают множество абордажных крючьев. После завершения «связывания» вирус решает свою первую задачу — он «адсорбируется», то есть прочно прикрепляется к клетке-мишени. Этот этап — начало конца клетки и начало успешного вторжения вируса.
Очень скоро в клеточной мембране под вирусом образуется углубление, и благодаря ему вирус полностью проскальзывает в клетку в виде пузырька — везикулы. (Если по какой-то причине вирус гриппа не может проникнуть сквозь клеточную мембрану, то отсоединяется от нее, а затем связывается с другой клеткой, в которую сумеет проникнуть. Немногие вирусы на это способны.)
После проникновения в клетку вирус гриппа не сливается с клеточной мембраной, как это делают многие другие вирусы, а прячется внутри клетки от иммунной системы. Поэтому иммунитет не может его найти, распознать и уничтожить.
Внутри клетки происходит изменение контуров и формы этого пузырька, этой везикулы — у вирусных гемагглютининов в кислой среде клетки возникают новые возможности. Под действием повышенной кислотности пузырек расщепляется надвое, а затем воссоединяется, приняв совершенно иную форму. Это все равно что снять носок с ноги, вывернуть его наизнанку и засунуть внутрь кулак. После этого клетка обречена.
Обнажившаяся часть гемагглютинина взаимодействует с пузырьком, и мембрана вируса начинает растворяться. Вирусологи называют это «раздеванием» вируса и его «слиянием» с клеткой. Вскоре гены вируса высвобождаются в клетку, а затем проникают в клеточное ядро и берут «командование» на себя. Клетка начинает продуцировать белки вируса вместо собственных. В течение нескольких часов эти белки комплектуются вновь синтезированными копиями вирусного генома.
В это время другие отростки на поверхности вируса, состоящие из нейраминидазы, выполняют свои особые функции. На электронных микрофотографиях видно, что у нейраминидазы есть головка-«коробочка», располагающаяся на тонком стебле, а к головке прикреплены структуры, напоминающие четыре одинаковых пропеллера с шестью лопастями. Задача нейраминидазы заключается в разрушении сиаловой кислоты, остающейся на поверхности пораженной клетки. Разрушаясь, кислота теряет способность связывать вирусы гриппа.
Это очень важная функция. В противном случае новообразованные вирусы, покидая уничтоженную клетку, могли бы застрять на ее поверхности — так мухи приклеиваются к липучке. Мертвая клетка связала бы их, помешав дальнейшему распространению. А нейраминидаза гарантирует, что новые вирусы смогут покинуть эту клетку и вторгнуться в другие. Опять-таки — очень немногие вирусы умеют нечто подобное.
От момента связывания вируса с клеткой до ее взрыва проходит около десяти часов, хотя возможны колебания — чаще в сторону уменьшения. После этого рой вирусов в числе от 100 тысяч до 1 миллиона покидает разрушенную клетку.
И слово «рой» здесь более чем уместно — по ряду причин.
Всякий раз, когда клетки организма воспроизводятся, гены стараются создавать свои точные копии. Но иногда в процессе копирования происходят ошибки — мутации. Это верно в отношении любых генов, кому бы они ни принадлежали — людям, растениям, вирусам. Но чем более сложным и высокоорганизованным является организм, тем больше у него механизмов, предупреждающих мутации. Человек мутирует с меньшей скоростью, чем бактерия, а бактерия с меньшей скоростью, чем вирус, причем вирусы, содержащие ДНК, мутируют медленнее, чем РНК-содержащие вирусы.
ДНК располагает своего рода встроенным механизмом контроля мутаций, позволяющим сократить число ошибок при копировании. У РНК такого механизма нет, поэтому она беззащитна перед мутациями. Таким образом, вирусы, использующие РНК для передачи своей генетической информации, мутируют намного быстрее (в 10 тысяч — 1 миллион раз), чем любой ДНК-содержащий вирус [180] Там же, с. 114.
.
Разные РНК-содержащие вирусы также мутируют с различной скоростью. Некоторые мутируют так быстро, что вирусологи считают их не столько популяцией копий одного и того же вируса, сколько «квазивидом» (то есть кажущимися разновидностями) или «роем мутантов» [181] J. J. Holland, «The Origin and Evolution of Viruses», in Microbiology and Microbial Infections (1998), 12.
.
Эти «рои» содержат триллионы и триллионы близкородственных, но разных вирусов. Даже совокупность вирусов, образованных в одной клетке, содержит множество генетических версий исходного вируса, а весь рой — как целое — обычно содержит все мыслимые перестановки первоначального генетического кода.
Читать дальшеИнтервал:
Закладка: