Виталий Ларичев - Колесо времени [Солнце, Луна и древние люди]
- Название:Колесо времени [Солнце, Луна и древние люди]
- Автор:
- Жанр:
- Издательство:Наука. Сибирское отделение
- Год:1986
- Город:Новосибирск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виталий Ларичев - Колесо времени [Солнце, Луна и древние люди] краткое содержание
К самым жгучим проблемам древнейшей истории относится интригующая загадка — насколько далеко в глубь тысячелетий уходит то, что можно определить волнующими словами: «истоки цивилизации». В книге археолога, доктора исторических наук В. Е. Ларичева рассказывается о попытках выявления в ранних культурах свидетельств интереса человека к небу, о преднаучных и научных знаниях первобытных людей, о самом, пожалуй, животрепещущем в древней истории — интеллектуальных и духовных порывах далекого предка современного человека.
Для всех интересующихся проблемами древних культур.
Колесо времени [Солнце, Луна и древние люди] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Оправданность и законность обращения историка культуры к подобным сюжетам не вызывают сомнения. О. Нейгебауер, который внес значительный вклад в раскрытие достижений древних в разных отраслях точных наук, постоянно подчеркивал, что история астрономии представляет собой одну из наиболее многообещающих областей прежде всего исторических исследований, активная работа в области которых обладает, по его словам, исключительным очарованием [13] См.: Нейгебауер О. Точные науки в древности. — М., 1968.
. Она, эта первобытная астрономия, как самый существенный фактор развития науки при ее становлении наглядно раскрывает роль точных знаний в развитии мышления человека, изучением чего, в сущности, и призван в первую очередь заниматься археолог, решая, естественно, и проблемы хозяйственной деятельности древних. О. Нейгебауер справедливо отметил глубокое влияние изначальной астрономии на духовный мир и в целом на первобытно-философские взгляды древних людей: с ее помощью они формировали свое представление об окружающем мире со всеми его компонентами.
Похвалы по поводу успехов жрецов Двуречья в развитии астрономии раздаются и с той стороны, откуда они могут исходить с полным на то основанием: от самих представителей точных наук, обычно скаредно скупых на одобрительные отзывы коллегам. Судя по их откликам, восхищаться в самом деле есть чем. И чтобы ясно представить историческую перспективу, т. е. истинные временные масштабы, которые потребовались первобытным не просто для постижения закономерностей движения небесных светил, а для выражения их в форме математического описания и математической теории, надо знать, что жрецы Двуречья к середине I тысячелетия до нашей эры уже свели традиционную, чисто наблюдательную астрономию глубокой первобытности к весьма скромной роли. Но чтобы наука смогла сделать такой выдающийся шаг, сколько же десятков тысячелетий должны были наблюдать Небо древние звездочеты Тигра и Евфрата? Если верить сведениям Порфирия (III век до нашей эры) и Симпликия (VI век нашей эры), то наблюдения вавилонских жрецов восходят ко времени, отстоящему от нашего на 31 тысячу лет, т. е., как сказал бы теперь археолог, к ранней стадии верхнего палеолита, когда на Земле едва только появился Homo sapiens — человек разумный.

Недоверие к такому сообщению естественно. Но прежде чем привести подтверждение его справедливости из области археологии древнекаменного века, попытаемся смягчить скептицизм хотя бы самым кратким перечнем главных достижений в астрономии жрецов Двуречья. Вселенную они, насколько можно судить по наиболее ранним сведениям, подразделяли на восемь сфер, с которыми связывали Луну (ближайшая к Земле сфера), Солнце, пять планет и неподвижные звезды. Особо важной в общей концепции мироздания считалась лунная сфера, прилегающая к колыбели человека — Земле, ибо она, по понятиям жрецов, определяла границы зоны, где живое зарождалось, а затем умирало, чтобы вновь возродиться. Ничего подобного вне лунной сферы, как считалось, не происходило, а все торжественно двигалось однажды заведенным порядком. Луна последовательными изменениями фаз, напротив, символизировала в древней философии циклическую в бесконечных рядах переменчивость бытия.
Небесный купол подразделялся на 3 зоны по 12 секторов. С каждой зоной соотносились определенные созвездия и планеты, а также (и это особенно знаменательно!) числа арифметической прогрессии, записанные в шестидесятиричном исчислении:
или 1.→1.10→1.20→1.30→1.40→1.50→2;
или 2.→1.50→1.40→1.30→1.20→1.10→1;
(1 = 60; 1.10 = 60 + 10 = 70 и т. д.). С помощью этой арифметической схемы, выражающей так называемые зигзагообразные функции, можно было, оказывается, описывать не словесно, а математическим языком периодические небесные явления.
Шестидесятиричная система счисления использовалась жрецами Двуречья как наиболее подходящая для астрономических занятий. Борозда Неба — эклиптика — подразделялась на 360 частей, или градусов, по числу дней в древнем солнечном году и отрезков, которые Солнце проходило ежедневно. Это, попросту говоря, означает, что за единицу меры принималась дуга «Борозды», которую проходило Солнце за сутки — 1/365 1/4 (дробь они округляли до 1/360°, что отличает ее от истинной величины на 1/20 000). Что касается принципиальной важности выделения такой меры, то она определяется возможностью приспособить ее для измерения угловых расстояний между звездами. Ведь мера такая всегда останется одной и той же, на каком расстоянии ни воображать звезды. Так, суточный путь Луны меж звезд, равный примерно 13°, можно было представлять реально в цифрах на любом в зоне ее «домов» участке Неба. Обладание мерой как раз и позволило жрецам Двуречья (как и «бритоголовым» Нила) определить в числах степень наклона Борозды Неба — эклиптики — к небесному экватору. Для этого они сначала замерили по гномону высоту Солнца в моменты летнего и зимнего солнцестояния. Она под 50° широты оказалась равной соответственно 63°27′ и 16°33′. Полученная затем разность между этими замерами — 46°54′ — показывала, насколько ближе к северу находилось летнее Солнце, а половина этой разности — 23°27′ — засвидетельствовала наклон эклиптики!
Поскольку путь дневного светила представлял собой наибольший подразделенный на градусы круг Неба, то все вообще окружности, а не только небесные, стали делиться на 360°. Само же базовое число 60 определялось в таких случаях не астрономическими, а геометрическими соображениями — радиус делит окружность на 6 частей по 60° каждая. Значит, недаром на глиняных табличках появился знак, означающий угловой градус!
Борозда Неба подразделялась, однако, не на 6, а на 12 частей по 30° каждая. Именно такой отрезок проходило Солнце за месяц. Что касается числа 60, связанного с дугой в 30°, то в такой дуге укладывалось близкое этому число диаметров светила. Подразделение круга эклиптики на секторы по 30° и совмещение с ними так называемых зодиакальных созвездий обусловливались математическими соображениями — по этой стандартной шкале измерялись, вычислялись и описывались движения Солнца и планет, о которых было известно, что они обладали собственным перемещением — с запада на восток. Жрецы разработали на этой основе строго фиксированный лунно-солнечный календарь, установили отношения периодов обращения Луны и планет, определили последовательность планетных и лунных явлений, а также выявили закономерности в изменении продолжительности дня и ночи. В то же время положение светил на Небе фиксировалось не только по зодиаку и градусам, но и по отношению к наиболее ярким звездам. Среди зодиакальных созвездий к концу II тысячелетия до нашей эры упоминались Овен, Телец, Близнецы, Палица, Пёс (Лев), Колос Девы, Ярмо, Скорпион, Стрелец, Рыба, Коза, Масляная лампа и Водяная курочка. Лунный зодиак, который составляли 28 и 33 «домов», разрабатывался, возможно, на основе повторного деления обычного зодиака, но до сих пор не ясно, как это делалось. Когда в полосу лунного зодиака входило 28 домов, т. е. небольших групп звезд, отстоящих друг от друга приблизительно на 13°, то Луна при движении по Небу каждую очередную ночь месяца оказывалась в следующем «доме». Такие «станции» позволяли определять точное положение Луны, а затем и планет по отношению к неподвижным звездам.
Читать дальшеИнтервал:
Закладка: