Коллектив авторов - 100 великих научных открытий

Тут можно читать онлайн Коллектив авторов - 100 великих научных открытий - бесплатно ознакомительный отрывок. Жанр: История, издательство Книжный клуб «Клуб семейного досуга», год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    100 великих научных открытий
  • Автор:
  • Жанр:
  • Издательство:
    Книжный клуб «Клуб семейного досуга»
  • Год:
    2018
  • Город:
    Харків
  • ISBN:
    978-617-12-5819-8, 978-617-12-5821-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - 100 великих научных открытий краткое содержание

100 великих научных открытий - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок

100 великих научных открытий - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Впрочем, прошло всего пару лет, и обнаружилось, что мю-мезон ведет себя совсем не так, как мезон, — в частности, не стремится взаимодействовать с другими «обитателями» ядра и удерживать его от распада. А 10 лет спустя британский физик Сесил Пауэлл (1903–1969) запустил в небо на воздушном шаре светочувствительную пластинку, а после спуска обнаружил на ней следы частиц космического излучения. Изучив следы, Пауэлл идентифицировал частицы, предсказанные Юкавой: они были в 273 раза тяжелее электрона и очень активно участвовали во взаимодействиях. Частице дали имя пи-мезон — чтобы не путать ее с мю-мезоном, а потом оказалось, что последний вовсе не мезон: при распаде он выбрасывает и нейтрино, и антинейтрино, тогда как мезоны излучают что-то одно.

В 1950 г. по продуктам распада был выявлен нейтральный пи-мезон (пион), а мю-мезон между тем получил новое имя — мюон — и славу самой загадочной частицы.

Кварки

К середине ХХ в. ученым удалось отыскать множество новых составных частиц атомного ядра — почти все они существовали недолго, зато взаимодействовали с огромной интенсивностью, рассеиваясь одна на другой и предотвращая ядерный распад. Помимо мезонов, в эту обширную группу — группу адронов — вошли барионы (объединяющие в себе нуклоны — протоны и нейтроны — и тяжелые гипероны), а также антибарионы. Они несли в себе разные заряды, у них различались скорость и направление вращения, но их массы явно были как-то связаны с процессом и продуктами распадов. Физики даже попробовали построить модель адронных взаимодействий, классифицировав их по силе столкновений и рассеяний, однако многие зависимости были введены просто как безосновательные правила игры и остались без объяснений, а соответствующие характеристики расположились хаотично.

О том, что адроны можно разделить на семейства, каждому из которых будет отвечать определенная комбинация общих признаков, научный мир узнал от американцев Джорджа Цвейга и Мюррея Гелл-Манна в 1964 г. Независимо друг от друга ученые определили, что признаков (или степеней свободы, или кварков) совсем немного — всего два, но комбинируются они между собой по-разному, и это очень влияет на общую энергию адрона.

Поначалу все думали, будто кварки — просто абстрактные характеристики, ведь воочию их никто не видел. (Кстати, само слово было позаимствовано из романа Дж. Джойса «Поминки по Финнегану», где встречается фраза-каламбур: «Три кварка для мистера Марка».)

Но за последующие четыре года в Стэнфордской лаборатории (SLAC) было завершено создание линейного ускорителя, предназначенного для выбивания заряженных высокоэнергетичных частиц, и ученые поняли: кварки — реальные частицы в составе адронов, и у них есть вполне реальные свойства: электрический заряд, масса, направление и скорость вращения. Подобно тому как протон и электрон удерживаются внутри атома, перебрасываясь мезонами, так и кварки держатся внутри адрона благодаря обмену особым видом частиц — глюонами. И что удивительно, чем дальше расходятся кварки, тем сильнее между ними связь, поэтому ни они, ни глюоны не могут выйти за пределы своего «дома». Такой вот конфайнмент.

Адронная модель по версии Цвейга и Гелл-Манна состояла из двух кварков ( up, down , или u, d — верхний и нижний) и их античастиц. Ученые определили, что верхний кварк несет положительный заряд, равный ⅔ протонного, а нижний — отрицательный, и его заряд составляет всего ⅓ заряда протона. Вообще, природа вполне могла бы обойтись только верхним и нижним кварками. Именно они служат стройматериалами для протонов и нейтронов, и при попытке вырвать кварк из родного «дома» тот просто распадается на протон/нейтрон и пион, состоящий опять-таки из этих двух кварков. Потому их стали считать семьей — дублетом — и представлять адроны в виде их комбинаций: барионы, например, как uud или udd , а мезоны — как союзы частицы и античастицы (скажем, ).

Но еще с конца 1940-х ученые замечали, что космические лучи, встречаясь с земной атмосферой, порождают какие-то странные тяжелые частицы, готовые распасться даже при слабеньком столкновении. Частицы вели себя, по тогдашним понятиям, совершенно неадекватно, и объяснить это можно было лишь предположением, что в них содержится новый тип кварка. Поскольку частицы казались всем странными, и гипотетическая материя, сложенная из них, тоже была бы странной, кварки получили название strange ( s ). Измерение заряда s -кварка показало, что он составляет треть протонного, и это натолкнуло ученых на мысль, что данный кварк тоже должен иметь партнера, заряженного на две трети.

Кроме того, уже был открыт мюон — близнец электрона, схожий с ним по величине заряда, но превосходящий в 207 раз по массе, и все знали, что у каждой частицы имеется личное нейтрино. Логично было предположить, что электрону и электронному нейтрино в атоме соответствует ядро из верхнего и нижнего кварков — все четыре частицы стабильны и составляют основу любой материи на планете. Тогда у нестойких мюона и мюонного нейтрино тоже должна быть своя кварковая пара, а значит, следует искать «брата» странного кварка. Первый шаг к его «поимке» сделали американцы Шелдон Глэшоу и Джеймс Бьоркен: в 1970 г. они предсказали существование очаровательного кварка ( charmed ) и даже продемонстрировали, как этот самый кварк участвует в быстрых распадах странных тяжелых мезонов — каонов. (Раньше механизм этого процесса был ученым непонятен.) Странность и очарование, по терминологии квантовых физиков, означали одно и то же свойство кварков — выживание в условиях сильного взаимодействия и разрушение при взаимодействии слабом.

Увы, долгое время ученые не могли найти подтверждение существованию очаровательного кварка: он был слишком тяжелым, и оборудование лабораторий не справлялось с таким великаном. Если странный кварк весил как 0,1 протона, а верхний и нижний и того меньше, то очаровательный был тяжелее протона, следовательно, частицы с одним таким кварком достигали массы полутора протонов, а обладатели пары c -кварк/антикварк завешивали на три протона! Впрочем, с середины 1960-х благодаря новому мощному протонному синхротрону AGS , запущенному в Нью-Йорке на острове Лонг-Айленд, исследователи получили возможность разгонять пучки протонов до огромных скоростей и воссоздавать разные массивные частицы. Вот тогда-то ускользавший c -кварк наконец-то проявил себя.

Правда, случилось это уже в 1974 г., когда американский профессор Сэмюэл Тинг (р. 1936) наблюдал за столкновениями в AGS протонов и ядер бериллия, влекущими рождение пар электронов и позитронов. Сначала Тинг разгонял исходные частицы до энергии свыше 3,5 ГэВ, но потом снизил обороты и заметил, что при разгоне примерно до 3 ГэВ образуется больше электрон-позитронных пар, чем обычно, а их общая энергия составляет 3,1 ГэВ. Это свидетельствовало о распаде неизвестной частицы, которая весит как три протона. Боясь ошибиться, Тинг еще полгода перепроверял полученные результаты, даже не подозревая, что в Стэнфордской лаборатории, на усовершенствованном ускорителе SLAC , полным ходом идут подобные эксперименты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих научных открытий отзывы


Отзывы читателей о книге 100 великих научных открытий, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x