Коллектив авторов - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Книжный клуб «Клуб семейного досуга»
- Год:2018
- Город:Харків
- ISBN:978-617-12-5819-8, 978-617-12-5821-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - 100 великих научных открытий краткое содержание
100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Через год аналогичный опыт поставил сын британского физика Джозефа Томсона, открывшего электрон, — Джордж Паджет Томсон (1892–1975). Правда, вместо никеля он использовал тонкую фольгу, состоящую из крошечных кристалликов золота, однако результат получил тот самый, какого добились его американские коллеги.
Впоследствии данный эксперимент проводили разные ученые, немного меняя условия — например, выпуская электроны под очень слабым напряжением. В таком вялом потоке частицы проходили сквозь решетку по одной, но все равно образовывали дифракционные круги. Так, при стовольтном напряжении, вполне нормальном для наших домашних электросетей, электроны двигались абсолютно неэнергично — в покое их энергия была бы в 5000 раз выше! — а их волны достигали диаметра атома. Но и такие электроны умудрялись рассеиваться на решетке кристалла, словно полноценные электромагнитные волны, а затем реагировали с отдельными атомами светочувствительной пластины и точечно затемняли ее, как делают все частицы.
Кроме того, эксперименты с рассеянием электронов показали, что у элементарных частиц волновая и корпускулярная модели поведения никогда не «включаются» в одно и то же время — только поочередно, словно дополняя одна другую. Это определил датский физик Нильс Бор (1885–1962), уточнив, что перемещаться в пространстве частицы склонны волнами, а когда дело доходит до передачи/приема энергии, то они сразу же переключаются на режим частиц. Самые выразительные дифракционные круги создаются наиболее мощными волнами, а значит, именно в эти места экрана врезается больше всего электронов. Но вот куда именно попадет частица после прохождения сквозь решетку, точно сказать не получится. Можно только предположить — выстроить ряд более или менее вероятных координат. Отсутствие определенности — это главный принцип квантовой механики.
Если провести умозрительный эксперимент, в процессе которого поток электронов пропускается через две щели решетки, мы не сможем уверенно указать отверстие, в которое входит та или другая частица. Разумеется, растянутые в пространстве волны могут проникнуть сразу через обе щели, но разве способна на такое маленькая частичка (шарик — в нашем представлении)? Оказывается, способна! Так же как фотон — частица-порция светового излучения. Хотя мы видим, что электромагнитная волна проходит в оба отверстия, определить путь каждого ее фотона нереально. Между тем даже единичный квант света, пройдя через пластину с отверстиями, покажет на экране полосы интерференции. Получается, фотон, подобно волне, накладывается сам на себя и усиливает собственную амплитуду. Аналогично проскальзывает в обе щели и электрон, как бы ни было сложно это представить, — и на экране появляются полосы.
Позже в экспериментах участвовали пучки атомов и молекул, протоны, нейтроны и прочие частицы — и каждый раз ученые видели на экране дифракционные круги, что подтверждало: все «подопытные» наполовину волны. Теория Бройля о двойственной природе микрообъектов была доказана, и это перевернуло привычную картину мира с ног на голову.
Планетарная модель атома
О том, что атом по своему устройству похож на Солнечную систему, первым догадался британский ученый Эрнест Резерфорд (1871–1937). В 1909 г. два физика — немец Ганс Гейгер и новозеландец Эрнест Марсден — под руководством Резерфорда направили поток альфа-частиц (гелиевых ядер, состоящих из двух протонов и двух нейтронов) на фольгу и обнаружили, что не все частицы прошли сквозь металл — некоторые отскочили. Поразмыслив, почему так произошло, Резерфорд нашел такое объяснение: вероятно, ядра гелия натыкались на ядра атомов металла, а поскольку заряд у ядер всегда положительный, при встрече они отталкиваются. Данная гипотеза вдохновила ученого разработать модель атома, актуальную и в наши дни.
Согласно этой модели, посередине атома расположено ядро, заполненное положительно заряженными частицами, а вокруг него движутся отрицательные частицы — электроны. Ядро подобно Солнцу, а электроны напоминают планеты, обращающиеся по круговым орбитам. И если планеты удерживаются на своих орбитах силами гравитации, то электронам в этом помогает электромагнитное поле. Ядро очень массивное: в нем сконцентрирована почти вся тяжесть атома, и от столкновений с легкими электронами ему ни холодно ни жарко — оно спокойно продолжает свой путь. Поэтому альфа-частицы преимущественно проходили сквозь фольгу; с пути сбились только те из них, которым «посчастливилось» столкнуться со столь же тяжелыми ядрами металла.
Когда Резерфорд рассказал о своем открытии другим ученым, его планетарный атом сразу же вытеснил «кексовую» модель, созданную Джозефом Томсоном и являвшую собой положительно заряженное облако-тесто, в котором снуют электроны-изюминки (ядрá в модели не предполагалось). Более того, эксперимент, проведенный Марсденом и Гейгером, послужил образцом для всех последующих опытов в сфере ядерной физики — с той поры ученые наблюдали за поведениемэлементарных частиц, стреляя ими по атомам, отдельным ядрам либо целым металлическим пластинам.
Конечно, развитие квантовой теории внесло свои коррективы в модель Резерфорда, ведь Солнечная система относится к видимому макромиру, а атомы — представители микромира, где действуют другие законы. Как позже выяснил датский ученый Нильс Бор, орбиты, по которым перемещаются электроны, — это энергетические уровни, и отрицательные частицы то и дело перескакивают с одного уровня на другой, вследствие чего атом выделяет или поглощает определенные порции-кванты энергии, соответствующие данным уровням. (Ни Земля, ни Марс, ни любая другая планета не смогли бы перепрыгнуть со своей орбиты на соседнюю.)
Открытие Бора дало ответ на вопрос, почему электроны не падают на ядро — ведь, по законам нашего макроскопического мира, вращающийся объект движется с равномерным ускорением, постоянно заворачивая к центру, и частица, истратив на вращение всю свою энергию, должна была бы скатиться в самую середину. Помимо того, благодаря исследованиям датского ученого стало ясно, почему спектр излучения атома имеет вид не плавно переходящих один в другой цветов, а четко разграниченных линий; и как можно вычислить длину волны каждого цвета. За это в 1922 г. Бор был награжден Нобелевской премией.
Далее развитием его теории занялся немецкий физик Вернер Гейзенберг (1901–1976). Проводя умозрительные эксперименты, ученый пришел к важному заключению: пока на атом ничего не воздействует извне и он пребывает в устойчивом состоянии, его электроны вращаются по внутренней, самой ближней к ядру орбите. Но стоит только воздействовать на атом (нагреть, толкнуть…), как электроны перейдут на внешний уровень, и у системы появится дополнительная энергия. Вращаясь во внешней оболочке, электроны потратят лишнюю энергию и снова перейдут на внутренний уровень, а атом вернется в устойчивое состояние ― это основное, нормальное состояние атомов: если бы они постоянно были возбуждены, во Вселенной не могла бы образоваться материя.
Читать дальшеИнтервал:
Закладка: