Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Название:Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Автор:
- Жанр:
- Издательство:Прогресс
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. краткое содержание
Мы стремились построить свой рассказ таким образом, чтобы он носил сугубо повествовательный характер и чтобы читатель мог уловить сущность этого человека и его научной работы, а также окунуться в научную и политическую атмосферу той эпохи, в которой жил и творил Альберт Эйнштейн. Автор
Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На некоторое время поиски единой теории поля превратились в математическое поветрие, которому с увлечением платили дань очень многие люди — и известные, и неизвестные. Они наперебой предлагали конкурирующие между собой геометрические теории. Этих теорий оказалось великое множество. Когда поветрие стало проходить, Эйнштейн продолжал работу в этом направлении. Но ему все никак не удавалось найти никакого основополагающего физического принципа, способного указать направление поисков; обычно чудодейственная интуиция подводила его; и в связи с этим многие физики наблюдали за его долгими поисками с едва скрываемым презрением. Однако Эйнштейну было что вспомнить: те десять лет неустанного напряженного труда (тогда точно так же приходилось все время решительно отказываться от, казалось бы, перспективных идей), которые ушли у него на создание общей теории относительности. Все, на что Эйнштейн мог опираться в поисках единой теории поля, — это только его уникальный жизненный опыт и глубочайшее убеждение, что такая теория должна существовать (или, как говорили древние иудеи, что бог един). Этого было достаточно для того, чтобы в течение более 30 лет поддерживать в нем готовность продолжать научный поиск, невзирая на бесконечные разочарования. Правда, он не поспевал за новейшими достижениями физики. Правда, его вдохновение стало изменять ему. Правда, идеи уже не зарождались у него в таком изобилии, как раньше, когда он был молод. Но они все же появлялись, и поиски единой теории поля характеризовались тем неукротимым упорством и настойчивостью, с которыми Эйнштейн всегда проводил свои идеи в жизнь.
В 1936 г. он был опечален последовавшей после продолжительной и тяжелой болезни смертью Марселя Гроссмана, того самого Гроссмана, без преданной дружбы и поддержки которого, может быть, никогда не расцвел бы гений Эйнштейна. Так рвались связи с прошлым. Кроме того, прошло уже много времени с тех пор, как улеглись бушевавшие некогда вокруг общей теории относительности страсти и ценность этой теории в глазах физиков несколько потускнела. Тем не менее Эйнштейн продолжал работать. И вот в 1937 г. он подготовил совместно с польским физиком Леопольдом Инфельдом и автором этой книги работу, в которой сообщалось о существенном достижении. Оно состояло в открытии такого вытекающего из общей теории относительности следствия, которое еще более подчеркивало ее и без того необыкновенное совершенство и выявляло такой ее аспект, которому не было соответствия в других теориях. Независимо от них к такому же открытию пришел советский физик Владимир Фок, работа которого была опубликована в 1938 г. Он получил этот результат принципиально иным способом, который был связан с дополнительными допущениями о свойствах материи. Что касается Эйнштейна, то его открытие основывалось на его же работе, выполненной за десять лет до того совместно с Я. Громмером. Давняя идея созрела, наконец, в голове Эйнштейна и обрела необыкновенную утонченность. Выполненные расчеты оказались настолько сложными и настолько громоздкими, что опубликовать их можно было лишь в самых общих чертах; в полном же виде они хранятся в библиотеке Института высших исследований. Там с ними могут ознакомиться специалисты. А вот суть этой работы можно изложить очень просто.
Уравнения гравитационного поля ограничивают кривизну пространства — времени. Одни типы кривизны допустимы, а другие — нет. Возможна грубая аналогия с листом бумаги, который хотя и сворачивается самыми разными способами, но не становится выпуклым. Рассмотрим теперь небесное тело, обладающее тяготением. Взятое само по себе, оно характеризуется конкретной кривизной пространства — времени, которую можно изобразить следующим образом:

Но предположим, что есть несколько тел, обладающих тяготением. Если каждое из них сохраняет характерную для него кривизну пространства — времени неизмененной, то эти искривления будут накладываться друг на друга следующим образом:

Если нужно, чтобы они гладко и плавно сливались, то придется, очевидно, их модифицировать.

Как же найти верный способ такого сглаживания? Ответ надо искать в уравнениях поля. Но они оказываются более строгими, чем мы ожидали. Они допускают гладкое и плавное соединение искривлений только в том случае, когда мировые линии обладающих тяготением тел завиваются друг относительно друга в спираль в соответствии с определенными правилами, или, говоря более понятным языком, только в том случае, когда эти обладающие тяготением тела движутся определенным строго ограниченным способом.
Как же они должны двигаться? Возможно, вы уже догадались. В основном — по законам ньютоновской теории гравитации. Но, конечно, не в точности по ним. С отклонением, и именно в этих-то отклонениях проявляется различие между теориями гравитации, построенными Ньютоном и Эйнштейном.
Вот, вне всякого сомнения, главный результат. Но если на этом поставить точку, будет упущено нечто еще более глубокое. В теории Ньютона различаются две части: закон гравитации и законы движения. Аналогично построена и теория Максвелла: уравнения электромагнитного поля плюс ньютоновские законы движения, а как бы между ними — «внешняя» формула, выражающая так называемую силу Лоренца. Теория Эйнштейна тоже, казалось, состоит из двух частей: во-первых, это уравнения гравитационного поля, а во-вторых, правило «наикратчайшего пути» для планетарных движений. Это правило не более чем временная мера: согласно ему, планеты считаются крупинками, не обладающими собственным гравитационным искривлением пространства — времени. Но, как мы теперь видим, фактически теория Эйнштейна не распадается на две части. Уравнения гравитационного поля сами управляют движением, причем движением не просто крупинок, а массивных тел, обладающих тяготением и собственной кривизной. Уравнения поля не нуждались ни в каких дополнительных правилах. Их самих было достаточно. Таким образом, структура эйнштейновской теории оказалась еще более экономной (это относится к числу правил), еще более простой, еще более однородной и еще более красивой, чем это представлялось ее автору лет за 20 до того, как теория еще только создавалась.
А что, если поместить максвелловские уравнения поля в контекст общей теории относительности? В этом случае еще сильнее, чем прежде, проявилось бы то волшебство, которое сопутствует Эйнштейну при объяснении законов движения. Наряду с движением сила Лоренца — уже на законных основаниях — автоматически вытекала бы из достаточных уравнений поля.
Читать дальшеИнтервал:
Закладка: