Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Название:Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ.
- Автор:
- Жанр:
- Издательство:Прогресс
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Банеш Хофман - Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. краткое содержание
Мы стремились построить свой рассказ таким образом, чтобы он носил сугубо повествовательный характер и чтобы читатель мог уловить сущность этого человека и его научной работы, а также окунуться в научную и политическую атмосферу той эпохи, в которой жил и творил Альберт Эйнштейн. Автор
Альберт Эйнштейн. ТВОРЕЦ И БУНТАРЬ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В 1921 г. Эйнштейн писал своему другу: «Большие открытия — дело молодых… так что для меня это уже позади». И все же между 1917 г. и 1931 г. он не бездействовал. Нам уже известны и его роль в появлении квантовой механики, и бурная реакция на это со стороны физиков. Борьба за правильную интерпретацию квантовой механики привела к изоляции Эйнштейна в научном мире. В 1918 г. выдающийся немецкий математик Герман Вейль — в то время профессор Цюрихского политехникума — предложил столь естественное и остроумное дополнение общей теории относительности, что оно заслуживало лучшей судьбы, чем та, которая выпала на его долю. Кривизна пространства — времени в теории Эйнштейна и — как следствие этого — отсутствие прямых линий привели к тому, что странные вещи стали происходить с направлением движения. Для того чтобы оценить влияние кривизны на направление, давайте рассмотрим искривленную двумерную поверхность Земли. Представьте себе, что два корабля находятся на экваторе на большом расстоянии друг от друга и отправляются в плавание строго на север. Мы, безусловно, готовы были бы согласиться с тем, что оба корабля двигались параллельно, когда стартовали, и с тем, что в дальнейшем они двигались прямо вперед — ведь оба плыли на север, не меняя курс ни вправо, ни влево. И все же по мере движения кораблей в северном направлении вдоль меридианов они бы все больше и больше сближались. А поскольку это так, мы бы, безусловно, отказались от прежнего предположения, что движение кораблей остается параллельным.
Вейля осенило, что в результате движения могут изменяться не только направления, но и размеры [42] Это не имеет абсолютно ничего общего с сокращением Фитцджеральда — Лоренца.
кораблей — если оставаться в рамках нашего примера. Правда, к очертаниям кораблей это не относится. Вейль занялся разработкой вопроса: к чему приведет допущение такого рода изменений размеров? Оказалось, что в результате подобного допущения геометрическая структура пространства — времени должна претерпеть фундаментальные изменения. На первый взгляд может показаться, что если первоклассный математик проявляет желание поиграть такими идеями, то, что ж, он имеет на это полное право. Но планы Вейля шли дальше. Он показал, что, используя эту новую геометрическую структуру пространства — времени, удается естественным образом связать эйнштейновскую теорию гравитации с электродинамикой Максвелла. А это сразу возбуждает наш интерес. Ибо когда Эйнштейн интерпретировал гравитацию как кривизну, он не смог разработать столь же фундаментальную геометрическую интерпретацию для электромагнетизма. А Вейль, взяв за основу введенные им изменения длин, разработал геометрическое описание электромагнитных явлений. Электромагнетизм стал тем самым как бы геометрическим партнером гравитационной кривизны. Таким образом, Вейль создал то, что мы называем единой теорией поля.
И с математической, и с эстетической точек зрения теория Вейля представляла собой значительное достижение. Но Эйнштейн всегда оставался прежде всего физиком и очень скоро пришел к выводу, что с этой теорией нельзя согласиться.
В то время как другие восхищались творением Вейля, Эйнштейн указал на имеющийся в нем недостаток, а именно: в теории Вейля предполагалась зависимость длин предметов от их прошлого. В пространстве — времени термин «длина» может относиться как ко времени, так и к пространству. Атомы испускают свет, и их пульсация очень точно определяет длину временных отрезков. Этот факт доказан существованием совершенно четких спектральных линий. Если бы прошлое разных атомов сильно различалось, то они, согласно теории Вейля, отмечали бы несхожие промежутки времени, что привело бы en masse [43] En masse (фр.) — целиком, в преобладающем количестве, в подавляющем большинстве. — Прим. перев.
не к спектральным линиям, а, скорее, к спектральным пятнам. Следовательно, нельзя обращаться с длинами так, как предложил Вейль. Таково было официальное возражение Эйнштейна против теории Вейля. В нем виден почерк великого физика, который интуитивно находит самую сердце- вину проблемы. Но в этом возражении не все раскрыто до конца. Вот отрывок из письма, написанного Эйнштейном Вейлю в 1918 г.; в нем звучит более серьезное возражение:
«Можно ли, в самом деле, обвинять господа бога в непоследовательности за то, что он упустил найденную Вами возможность сделать физический мир гармоничным? Не думаю. Если бы он сотворил мир по-Вашему, [я] укоризненно сказал бы: „Милый бог, уж коль скоро в твоем решении не предусматривалось придать объективный смысл [тождественности размеров удаленных друг от друга твердых тел], почему же тогда ты не пренебрег [сохранением их форм]?“»
Вот где действительно виден почерк великого физика.
Пришлось Вейлю поневоле отделить свою теорию от гравитации. Правда, для нее (точнее, для ее фрагмента) нашлось место в границах квантовой теории, где работа Вейля вполне удовлетворительно увязывалась с теорией электромагнетизма. В то время были известны лишь две фундаментальные «силы»: гравитационная и электромагнитная. Вейль заставил всех осознать, что если для одной из них имеется геометрическая интерпретация, а для другой — нет, то это вступает в противоречие с эстетическими принципами. Поэтому ученые энергично вели поиски новой геометрии — такой, которая позволила бы удачно объединить и электромагнетизм, и гравитацию. Именно этим занимался Эйнштейн до конца своих дней. И если мы коснемся здесь лишь нескольких вариантов единой теории поля, предложенных и Эйнштейном, и другими учеными, то отчасти потому, что при всем их разнообразии в них есть немало общего. Что же касается Вейля, то он получил должность профессора Геттингенского университета, но с приходом нацистов к власти переехал в Соединенные Штаты, где стал коллегой Эйнштейна по Институту высших исследований.
Эддингтон построил единую теорию поля, близкую к теории Вейля, но более универсальную. Если стоит задача выбрать кратчайший маршрут путешествия по поверхности шара, то мы последуем наиболее прямым (с учетом кривизны поверхности) путем. И Вейль и Эддингтон (его работа появилась в 1921 г.) разрушили эту связь между «самым кратким» и «самым прямым», — связь, которая сохранилась в эйнштейновском искривленном пространстве — времени.
Но в 1921 г. Т. Калуца в Германии избрал другой путь, предложив ввести в некотором роде «атрофированное» пятое измерение. Он записал эйнштейновские уравнения гравитации безо всяких изменений — однако для пяти, а не для четырех измерений. И этого оказалось достаточно, чтобы объединить гравитацию и электромагнетизм.
Читать дальшеИнтервал:
Закладка: