Эко Умберто - Открытое произведение

Тут можно читать онлайн Эко Умберто - Открытое произведение - бесплатно ознакомительный отрывок. Жанр: Языкознание, издательство Симпозиум, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Открытое произведение
  • Автор:
  • Жанр:
  • Издательство:
    Симпозиум
  • Год:
    2006
  • Город:
    СПб
  • ISBN:
    5-89091-321-3
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Эко Умберто - Открытое произведение краткое содержание

Открытое произведение - описание и краткое содержание, автор Эко Умберто, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Умберто Эко едва ли не первым обратил внимание на феномен «открытого произведения», в котором «воспринимающая сторона» становится подлинным соавтором. Описание этого феномена — с приведением множества примеров из различных областей искусства и науки — и дается в работе знаменитого итальянского ученого, сочтенной критиками сразу по ее выходе революционной. Книга подготовлена на основе наиболее полного итальянского издания, снабженного предисловиями автора, в которых раскрываются причины создания работы и прослеживается ее судьба в европейском интеллектуальном мире.

Открытое произведение - читать онлайн бесплатно ознакомительный отрывок

Открытое произведение - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эко Умберто
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нам легко могут возразить, сказав, что не только рост непредсказуемости придает очарование поэтической речи. Если бы это было так, тогда гораздо более поэтичными были бы стихи Буркиелло, которые гласят:

«Жареные телячьи ножки // и румяна в пресном бульоне // гневно спорили в куче переваренной еды // где речь заходила о поверженных кочешках брокколи». Нет, мы просто хотели сказать, что способ 11 необычного использования языка — вот что определило поэтический результат, и чтс использование вероятностей, предусмотренных системой языка, ничего бы нам не дало. Если. конечно, новизна не содержалась в самом сообщении, а не в использованных выражениях и не в способе оживлять ставшие привычными чувства: в таком смысле составленное по всем правилам смысловой избыточности радиосообщение о том, что на Рим сбрасывают атомную бомбу, было бы весьма информативно. Однако этот разговор выводит нас за пределы изучения структур языковой системы (а также за пределы эстетики, что лишний раз доказывает: эстетика должна интересоваться не столько тем, что говорится, сколько тем, как это сказано). И потом, если стихи Петрарки сообщают информацию любому, кто способен постичь их смысл, даже и самому Петрарке, сообщение об атомной бомбардировке, напротив, ничего нового не сказало бы пилоту бомбардировавшему город, и уже тем более — тому, кто слушал бы его во второй раз. Таким образом, мы исследуем возможность передавать информацию, не являющуюся привычным «смыслом», через использование традиционных структур языка, которое противоречит законам вероятности, управляющим им изнутри.

Следовательно, в таком случае информация связывается не с порядком, а с неупорядоченностью, по крайней мере, с определенным непорядком, который непривычен и которого нельзя предугадать. Мы говорили о том, что положительным измерением такой информации (поскольку она отличается от смысла (significato) является энтропия. Но если энтропия оказывается максимальной неупорядоченностью и внутри нее наблюдается сосуществование всяческих вероятностей и никакой именно, тогда информация, содержащаяся в намеренно организованном сообщении (поэтическом или обычном) предстанет лишь как весьма своеобразная форма неупорядоченности — неупорядоченности, которая кажется таковой поскольку берет начало в предшествовавшем ей порядке. Можно ли в этой связи по — прежнему говорить об энтропии?

Передача информации

Вернемся ненадолго к классическому примеру из кинетической теории газов: представим сосуд, наполненный молекулами газа, которые движутся с одинаковой скоростью. Если движение регулируется чисто статистическими законами, энтропия системы очень высока, и — даже если мы можем предсказать общее поведение системы — нам нелегко предугадать, каким будет следующее положение той или иной молекулы; иными словами, молекула может двигаться самыми разными способами, она, так сказать, открыта всем возможностям, мы знаем, что она может занять самые разные положения, но не знаем, какие именно. Для того, чтобы лучше определить поведение отдельных молекул, нам потребовалось бы дифференцировать их скорость, одним словом, придать системе порядок и уменьшить в ней энтропию: поступив таким образом, мы увеличим возможность того, что молекула будет вести себя так, а не иначе, но ограничим число ее изначальных разнообразных возможностей (подчинив их определенному коду).

Итак, если я хочу что — либо знать о поведении отдельной частицы, информация, которой я ищу, противостоит энтропии, но если я хочу знать все возможные варианты поведения любой частицы, тогда информация, которую я ищу, будет прямо пропорциональна энтропии; привнося в систему порядок и уменьшая в ней энтропию, я узнаю много в каком — то одном смысле, но много меньше в другом.

То же самое происходит и с передачей информации.

Постараемся это пояснить ссылкой на формулу, с помощью которой обычно выражается величина какой — либо информации:

I = N log h

где «h» представляет собой число элементов, из которых делается выбор, а N — количество вариантов выбора, которые можно сделать (в случае с двумя игральными костями h = 6, а N = 2; если же мы имеем шахматную доску, то h = 64, а N = все ходы, которые допускаются правилами шахматной игры).

Если же речь идет о системе с высокой энтропией (где могут осуществиться все комбинации), значения величин N и h оказываются очень большими и, следовательно, самой высокой оказывается и величина той информации о поведении одного или нескольких элементов системы, которую можно было бы передать. Однако очень трудно сообщить столько бинарных вариантов выбора, сколько необходимо для того, чтобы обособить выбранный элемент и определить его сочетания с другими элементами.

Каким образом можно легко сообщить ту или иную информацию? Это можно сделать, сокращая число задействованных элементов и вариантов выбора, вводя какой — либо код, систему правил, которая предусматривает наличие строго определенного числа элементов, исключает некоторые комбинации и допускает лишь оговоренные. В этом случае можно будет сообщить информацию через умеренное число бинарных вариантов выбора. Однако значения величин N и h в таком случае уменьшаются и, следовательно, уменьшается величина полученной информации.

Таким образом, чем больше информация, тем труднее как — то ее сообщить, и чем яснее какое — либо сообщение, тем меньше в нем информации.

Вот почему в своем классическом труде по теории информации 12Шеннон и Уивер осмысляют информацию как величину, прямо пропорциональную энтропии. Другие исследователи тоже признают, что Шеннон, один из основателей этой теории, обращает внимание как раз на этот аспект информации 13, но все они напоминают о том, что, если мы понимаем информацию именно в таком узко статистическом смысле, она не имеет никакого отношения к тому, истинно или ложно содержание сообщения (не имеет отношения к его «значению»). Мы лучше все это усвоим, если обратимся к некоторым высказываниям Уоррена Уивера, которые содержатся в его очерке, посвященном популяризации математического аспекта информации 14: «В этой новой теории слово «информация» относится не столько к тому, что говорится, сколько к тому, что могло бы быть сказанным, то есть информация выступает как мера нашей свободы в выборе сообщения… Необходимо помнить, что в математической теории коммуникации наш интерес обращен не к значению отдельных сообщений, а к общей статистической природе источника информации…

Понятие «информации», изложенное в этой теории, на первый взгляд кажется странным и неудовлетворительным: неудовлетворительным потому, что не имеет никакого отношения к понятию «значения», а странным потому, что оно не только относится к какому — то отдельному сообщению, но, в первую очередь, учитывает статистический характер всей совокупности сообщений; оно странно еще и потому, что в таком статистическом контексте слова «информация» и «неопределенность» тесно связаны между собой».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эко Умберто читать все книги автора по порядку

Эко Умберто - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Открытое произведение отзывы


Отзывы читателей о книге Открытое произведение, автор: Эко Умберто. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x