Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Тут можно читать онлайн Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Corpus, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эта странная математика. На краю бесконечности и за ним
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-17-119879-4
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание

Эта странная математика. На краю бесконечности и за ним - описание и краткое содержание, автор Агниджо Банерджи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок

Эта странная математика. На краю бесконечности и за ним - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Агниджо Банерджи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В принципе, при наличии достаточного времени ДМТ под силу любая задача, с которой может справиться НМТ. Загвоздка как раз в “достаточности” времени. Ту же самую задачу, которую ДМТ выполняет за экспоненциальное время, НМТ способна была бы выполнить за полиномиальное. Жаль все-таки, что в реальности такая машина невозможна. Зато этот воображаемый компьютер позволил нам вплотную подобраться к одной из важнейших нерешенных проблем теории алгоритмов и математики в целом – так называемой проблеме равенства классов P и NP . Премия в миллион долларов обещана Математическим институтом Клэя тому, кто первым сумеет предложить доказуемо корректное решение [20] Это одна из семи “задач тысячелетия”, определенных Математическим институтом Клэя в 2000 году. За решение любой из них назначено вознаграждение в миллион долларов. Пока единственная решенная задача из этой семерки – знаменитая гипотеза Пуанкаре, доказанная Григорием Перельманом в 2002–2003 годах. От премии Перельман отказался. – Прим. науч. ред . . P и NP – названия, присвоенные двум множествам задач разного класса сложности. Задачи множества P (от англ. polynomial – “полиномиальный”) могут быть решены за полиномиальное время на обычной (детерминированной) машине Тьюринга. Задачи множества NP (от англ. non-deterministic polynomial – “недетерминированный полиномиальный”) – это те, которые мы могли бы решить за полиномиальное время, будь у нас НМТ. (Одна из таких задач – разложение больших чисел на простые сомножители. НМТ способна выполнить поиск нужного множителя в двоичном дереве быстро, за полиномиальное время, тогда как ДМТ придется прочесывать каждую ветвь, что займет экспоненциальное время.) Это означает, что все задачи множества P принадлежат также и множеству NP , поскольку НМТ может делать все то же, что и обычная машина Тьюринга, за то же время.

Разумно предположить, что множество NP больше, чем P , ведь оно включает и те задачи, которые можно решить только на машине Тьюринга, обладающей сверхспособностями – поразительной везучестью или фантастической производительностью. Но на сегодня никем пока не доказано, что обычная ДМТ не способна на все то же, что по силам НМТ, хотя такое предположение и кажется весьма правдоподобным. Однако для математиков есть огромная разница между разумным предположением и достоверностью. Пока нет убедительных свидетельств иного, всегда остается возможность, что кто-то докажет равенство множеств N и NP – почему, собственно, проблема и носит такое название. Миллион долларов – сумма немалая, но как ее получить, если для этого нужно доказать (или опровергнуть), что все задачи класса NP принадлежат также и классу P ? Небольшой повод для оптимизма дает факт существования так называемых NP -полных задач. Они примечательны тем, что, если для решения хотя бы одной из них удастся найти полиномиальный алгоритм, выполняемый на обычной машине Тьюринга, это будет означать, что такой алгоритм существует для всех задач класса NP . В этом случае утверждение “ P = NP” будет истинным.

Первая NP -полная задача, названная задачей выполнимости булевых формул, или SAT [21] От англ. Boolean Satisfiability Problem . , была сформулирована в 1971 году американско-канадским математиком и специалистом в области теории вычислительных систем Стивеном Куком. Ее можно выразить в терминах логических вентилей. Имеется схема, состоящая из произвольного множества логических вентилей и входов (но не имеющая обратной связи) и ровно одного выхода. Вопрос: можно ли найти такое сочетание входов, при котором выход “включится”? В принципе, решение всегда можно искать перебором всех возможных сочетаний входов в системе, но это все равно что использовать экспоненциальный алгоритм. Чтобы доказать равенство P и NP , придется доказать, что есть более быстрый – полиномиальный – способ получить ответ.

SAT – хотя и первая, но не самая известная из NP -полных задач. Эта честь принадлежит задаче коммивояжера, уходящей корнями в середину XIX века. В руководстве для коммивояжеров, опубликованном в 1832 году, шла речь о наиболее эффективном способе объехать ряд городов в Германии и Швейцарии. Научную формулировку задаче впервые дали пару десятилетий спустя ирландский физик и математик Уильям Гамильтон и англиканский священник и математик Томас Киркман. Предположим, что коммивояжеру нужно объехать множество городов и ему известно расстояние (не обязательно по прямому маршруту) между каждой парой городов. Необходимо найти кратчайший маршрут, по которому можно объехать все города и вернуться в исходный. Только в 1972 году было доказано, что эта задача является NP -полной (то есть что построение полиномиального алгоритма для ее решения докажет равенство P и NP ). Это объясняет, почему не одно поколение математиков, в последнее время даже вооруженных компьютерами, сталкивалось с трудностями при поиске оптимальных решений для сложных маршрутов.

Понять условия задачи коммивояжера не составит труда никому, а вот решить ее ничуть не проще, чем любую другую NP -полную задачу – все они чрезвычайно сложны. Математикам не дает покоя то, что построение полиномиального алгоритма для любой NP -полной задачи докажет, что P = NP . Последствия этого будут очень серьезны: в частности, это будет означать, что существует полиномиальный алгоритм для взлома RSA – метода криптографической защиты (мы еще поговорим о нем позже), на который мы полагаемся ежедневно, например, при получении банковских услуг. Хотя, скорее всего, такого алгоритма все же не существует.

Недетерминированные машины Тьюринга существуют, как мы уже выяснили, только в нашем воображении. Другое дело – квантовый компьютер, потенциально тоже чрезвычайно мощное устройство, которое уже начали создавать. Как ясно из названия, в основе принципа его работы лежит ряд очень странных явлений из области квантовой механики. А оперирует он не обычными битами (от англ. binary digit – “двоичное число”), а квантовыми, так называемыми кубитами (от англ. quantum bit – “квантовый бит”). Кубит, который может представлять собой просто электрон с неизвестным спином, имеет в контексте квантовых эффектов две характеристики, отсутствующие у обычного бита в традиционном компьютере. Во-первых, он может находиться в суперпозиции состояний: одновременно представлять собой и 0, и 1, а становиться тем или другим только тогда, когда за ним наблюдают. Это же явление можно истолковать и по-другому: квантовый компьютер, вместе со всей остальной вселенной, расщепляется на две копии самого себя, в одной из которых бит 1, а в другой – бит 0, и только при измерении кубита он, вместе с окружающей его вселенной, “схлопывается” в конкретное значение. Второе любопытное свойство, лежащее в основе работы квантовых компьютеров, – запутанность. Два запутанных кубита, даже будучи разделенными в пространстве, так связаны друг с другом явлением, которое окрестили “жутким дальнодействием”, что измерение одного из них мгновенно влияет на измерение второго.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Агниджо Банерджи читать все книги автора по порядку

Агниджо Банерджи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эта странная математика. На краю бесконечности и за ним отзывы


Отзывы читателей о книге Эта странная математика. На краю бесконечности и за ним, автор: Агниджо Банерджи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x