Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных

Тут можно читать онлайн Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусство статистики. Как находить ответы в данных
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001692508
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных краткое содержание

Искусство статистики. Как находить ответы в данных - описание и краткое содержание, автор Дэвид Шпигельхалтер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.
Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики. На русском языке публикуется впервые.

Искусство статистики. Как находить ответы в данных - читать онлайн бесплатно ознакомительный отрывок

Искусство статистики. Как находить ответы в данных - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дэвид Шпигельхалтер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если задуматься, то мы окружены эпистемической неопределенностью в отношении вещей, которые определены, но нам пока неизвестны. Игроки ставят на следующую карту, мы покупаем билеты мгновенной лотереи, обсуждаем пол будущего ребенка, ломаем голову над детективом, спорим о количестве тигров, оставшихся в дикой природе, и получаем оценки возможного числа мигрантов или безработных. Все это объективно существующие факты или числа, просто мы их не знаем. Снова подчеркну, что с байесовской точки зрения для представления нашего личного незнания этих фактов и чисел удобно использовать вероятности. Мы можем даже подумать о присвоении вероятностей альтернативным научным теориям, но этот вопрос более спорный.

Конечно, эти вероятности будут зависеть от наших нынешних знаний: вспомните пример из главы 8, где вероятность выпадения орла или решки зависит от того, посмотрели мы на монету или нет. Байесовские вероятности с необходимостью субъективны – они зависят от наших отношений с окружающим миром, а не являются свойствами самого мира. Такие вероятности должны меняться по мере получения нами новой информации.

Это приводит нас ко второму крупному вкладу Байеса – результату, который позволяет постоянно пересматривать текущие вероятности в свете новых доказательств. Он известен как теорема Байесаи фактически предоставляет формальный механизм обучения на опыте – блестящее достижение для малоизвестного священника из маленького английского курортного городка [214].

Наследие Байеса обеспечивает фундаментальное понимание того, что данные не говорят сами за себя – центральную роль здесь играет наше внешнее знание и наши суждения. Это может показаться несовместимым с научным процессом, тем не менее наши фоновые знания и понимание всегда были частью извлечения информации из данных, разница лишь в том, что в байесовском подходе они обрабатываются формальным математическим образом.

О выводах из работы Байеса рьяно спорили многие статистики и философы, возражающие против идеи, что субъективное суждение играет в статистике какую-либо роль. Поэтому будет справедливо, если я проясню собственную позицию: меня познакомили с субъективистской байесовской школой статистических рассуждений в начале моей карьеры [215], и она до сих пор кажется мне наиболее удовлетворительным подходом.

У вас в кармане три монеты: на одной два орла, на другой две решки, третья обычная. Вы наугад вытаскиваете монету, подбрасываете ее, и выпадает орел. Какова вероятность, что на другой стороне монеты тоже орел?

Это классическая задача с эпистемической неопределенностью: как только монета падает после подбрасывания, никакой случайности не остается и любое высказывание о вероятности – всего лишь выражение вашего нынешнего личного незнания о другой стороне монеты.

Многие бы решили, что ответ – 1/2, поскольку монета либо обычная, либо с двумя орлами, и вероятность выбрать одну из них одинакова. Существует много способов это проверить, но проще всего использовать идею с ожидаемыми количествами, описанную в главе 8.

На рис. 11.1 показано, чего можно ожидать, если проделать такой эксперимент шесть раз. В среднем каждая монета будет выбрана дважды, и каждая из сторон выпадет по разу. Орел выпадает в трех случаях, причем в двух на второй стороне также будет орел. Поэтому вероятность того, что на второй стороне монеты тоже орел, равна 2/3, а не 1/2. По сути, выпадение орла повышает вероятность выбора монеты с двумя орлами, ведь у такой монеты есть два варианта упасть орлом вверх, а у симметричной – только один.

Рис. 11.1

Дерево ожидаемых количеств для задачи с тремя монетами, показывающее, чего можно ожидать в случае шести экспериментов

Если этот результат не кажется вам интуитивно понятным, то следующий пример удивит вас еще больше.

Предположим, что точность некой проверки на допинг в спорте – 95 %, то есть правильно будут определены 95 % тех, кто принимает допинг, и 95 % тех, кто не принимает. Допустим, что 1 из 50 атлетов действительно принимает допинг. Если тест спортсмена показал положительный результат, то какова вероятность, что он точно допингист?

Этот тип потенциально сложной задачи опять же лучше всего решать с помощью ожидаемых количеств, аналогично проверке женщин на рак молочной железы из главы 8 и ситуации с высокой долей неверных результатов в научных публикациях из главы 10.

Дерево на рис. 11.2 начинается с 1000 спортсменов, из которых 20 употребляли допинг, а 980 нет. Все допингисты, кроме одного, выявлены (95 % от 20 = 19), однако положительные тесты также оказались у 49 атлетов, не употреблявших допинг (95 % от 980 = 931). Следовательно, в общей сложности мы можем ожидать 19 + 49 = 68 положительных тестов, из которых только 19 действительно отражают допинг. Поэтому вероятность, что атлет с положительным допинг-тестом истинный допингист, составляет всего 19/68 = 28 %, а оставшиеся 72 % будут ложными обвинениями. Итак, хотя объявлено, что точность тестирования на допинг 95 %, большинство людей с положительным допинг-тестом на самом деле будут невиновными. Нетрудно представить все проблемы, которые этот парадокс может вызвать в реальной жизни, когда спортсменов незаслуженно клеймят за проваленный допинг-тест.

Рис. 11.2

Дерево ожидаемых количеств для задачи о допинге, показывающее, чего можно ожидать при проверке 1000 спортсменов, когда допинг принимает 1 из 50, а «точность» тестирования составляет 95 %

Один из способов осмыслить этот процесс – «поменять порядок» в дереве, сначала поставив тестирование, а затем раскрыв истину. Это показано на рис. 11.3.

Рис. 11.3

«Обращенное» дерево ожидаемых количеств для задачи о допинге, перестроенное так, чтобы сначала шли результаты тестов, а затем истинное положение вещей

Это «обращенное» дерево дает в точности те же числа, но учитывает временной порядок, в котором мы получаем информацию (тестирование → допинг), а не порядок по фактической временн о й шкале (допинг → тестирование). Это «обращение» как раз и есть тем, что делает теорема Байеса; на самом деле байесовское мышление до 1950-х именовалось «обратной вероятностью».

Пример со спортивным допингом показывает, насколько легко спутать вероятность наличия допинга при условии положительного теста (28 %) с вероятностью положительного теста при условии наличия допинга (95 %). Мы уже сталкивались со случаями, когда вероятность события А при условии, что произошло событие В, путали с вероятностью события В при условии, что произошло событие А:

• неправильная интерпретация P-значений, когда вероятность какого-то факта при условии нулевой гипотезы смешивается с вероятностью нулевой гипотезы при условии этого факта;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дэвид Шпигельхалтер читать все книги автора по порядку

Дэвид Шпигельхалтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусство статистики. Как находить ответы в данных отзывы


Отзывы читателей о книге Искусство статистики. Как находить ответы в данных, автор: Дэвид Шпигельхалтер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x