Наум Виленкин - В поисках бесконечности
- Название:В поисках бесконечности
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наум Виленкин - В поисках бесконечности краткое содержание
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эту точку зрения называют финитарной. Для строгого ее проведения Гильберт дал четко ограниченный список допустимых символов. А для того чтобы помешать проникновению в математику каких-либо представлений о бесконечном, связанных с наглядностью, с использованием интуиции, он разработал специальную теорию формальных доказательств. В этой теории символы, выражающие логические утверждения, преобразуются по точно сформулированным правилам, подобно тому как в обычной алгебре преобразуются алгебраические выражения.
Первой целью нового исчисления было объявлено формальное доказательство непротиворечивости арифметики натуральных чисел. Более двух десятилетий Гильберт и его ученики неустанно искали пути для решения этой задачи. Хотя они добились многих успехов, окончательный успех никак не приходил.
В 1931 г. появилась статья Курта Гёделя [108] Гёдель Курт (р. 1906) — австрийский математик и логик.
, которая прозвучала как гром с ясного неба. Тончайшим образом усовершенствовав и формализовав аргументы, восходившие по сути дела к древнему парадоксу "Лжец", он доказал удивительный результат: в любой формальной системе, содержащей арифметику натуральных чисел, можно сформулировать утверждение, которое в этой системе нельзя ни доказать, ни опровергнуть. В то же время если принять существование всего бесконечного множества натуральных чисел, то это утверждение должно быть либо истинным, либо ложным, а потому "демон" Бореля, способный сделать счетное множество проверок, смог бы узнать, какой из этих двух случаев имеет место.
Открытие Гёделя было одним из крупнейших достижений логики за двухтысячелетий период ее существования — оно вскрыло пропасть между истинным и доказуемым. Правда, однажды Гёделю довелось услышать на одной из конференций по логике доклад, в котором утверждалось, что со времен Аристотеля никаких достижений в этой науке не было.
Мы не будем углубляться в круг вопросов, связанных с открытием Гёделя, и отошлем читателя к прекрасной книге Ю. И. Манина "Доказуемое и недоказуемое", вышедшей в 1979 г. в издательстве "Советское радио".
Хотя после работы Гёделя стало ясно, что намеченная Гильбертом программа невыполнима, его усилия не пропали даром — в ходе исследований возникла новая ветвь математики, касавшаяся теории доказательств и получившая название метаматематики. Это привело к невиданному углублению идей и развитию методов математической логики, что оказалось потом полезным при разработке алгоритмических языков для быстродействующих вычислительных машин.
Аксиоматизация бесконечности.
Иной путь преодоления трудностей теории бесконечных множеств выбрали математики, начавшие строить для нее систему аксиом. Одна из этих систем была предложена в 1908 г. Цермело и усовершенствована потом А. Френкелем. В аксиоматике Цермело — Френкеля описываются свойства отношения принадлежности x∈y, с помощью которого определяются отношения включения x⊂z у для множеств и понятие равенства множеств. Формулируются аксиомы, утверждающие, что два множества, содержащие одни и те же элементы, равны, а равные множества содержатся в одних и тех же множествах. Далее идут аксиомы, кодифицирующие правила составления множеств — образование пары множеств и объединения любой совокупности множеств. Кроме того, вводится аксиома о существовании множества, составленного из всех подмножеств данного множества. Наконец, к той же группе аксиом относится правило, позволяющее выделять из данного множества его подмножество, зная некоторые свойства его элементов. Эта аксиома отсекает парадоксальные множества, предложенные Кантором, Бурали-Форти и Расселом,- все они задавались свойствами своих элементов, но не были подмножествами какого-то "законного" множества.
Из указанных выше аксиом можно получить существование пустого множества, а также из каждого множества x получить новое множество {x}, единственным элементом которого является x. В систему аксиом Цермело — Френкеля входит, разумеется, аксиома выбора. Кроме того, в этой системе содержится аксиома о том, что образ множества при некотором отображении является множеством. Наконец, в этой системе есть аксиома бесконечности, которая по сути дела утверждает, что существует бесконечное множество натуральных чисел (хотя в ее формулировку это понятие и не входит).
Для любой системы аксиом критическими являются два вопроса: нельзя ли вывести из нее два противоречащих друг другу утверждения и можно ли с ее помощью доказать или опровергнуть любое утверждение, формулируемое в относящихся к ней терминах? Сторонники системы аксиом Цермело — Френкеля усматривают доказательство ее непротиворечивости в том, что до сих пор из нее не удалось вывести противоречивых утверждений (что, впрочем, не гарантирует того же в дальнейшем). В качестве же проверки силы этой системы аксиом был поставлен вопрос о возможности доказать или опровергнуть на ее основе континуум-гипотезу Кантора. Однако и в этом направлении исследования привели к совершенно удивительным результатам.
Началось с того, что в 1939 г. тот же Курт Гёдель доказал невозможность опровержения гипотезы континуума. Присоединив к системе аксиом теории множеств утверждение Кантора, он получил непротиворечивую систему аксиом (разумеется, эта непротиворечивость имела относительный характер при условии, что все остальные аксиомы этой системы не противоречили друг другу).
Но уже давно Лузин предвидел, что может возникнуть парадоксальная ситуация, когда аксиомам теории множеств не будут противоречить ни континуум-гипотеза, ни ее отрицание. В 1963 г. Поль Коэн [109] Коэн Поль (р. 1934) — американский математик, получивший решение проблемы континуума.
доказал, что дело обстоит именно так. Ему удалось доказать, что из системы аксиом Цермело — Френкеля нельзя вывести континуум-гипотезу. Кроме того, оказалось, что аксиома выбора не зависит от остальных аксиом Цермело — Френкеля подобно тому, как аксиома о параллельных не может быть ни доказана, ни опровергнута на основе остальных аксиом геометрии. При этом выяснилось, что к системе аксиом, полученной из системы Цермело — Френкеля заменой аксиомы выбора на ее отрицание, можно без противоречия присоединить и утверждение о невозможности полной упорядоченности континуума. Почти одновременно с Коэном близкие (и даже более сильные) результаты получил чешский математик П. Вопенка.
Положение в математике, создавшееся после работ Геделя, Коэна и Вопенки, отчасти напоминает ситуацию, сложившуюся в геометрии после работ Н. И. Лобачевского и Я. Больяи [110] Больяи Янош (1802-1860) — венгерский математик. Независимо от Н. И. Лобачевского (но несколько позже) создал неевклидову геометрию.
. Но евклидова и неевклидова геометрии были разными математическими моделями реального мира, и выбор между ними касался физики, а не математики — основы математики не были затронуты этими открытиями. Теперь же дело идет именно об этих основах — ведь оказалось, что математик может по своему произволу решать, какая теория множеств ему больше нравится — та, в которой верны аксиома выбора и гипотеза континуума, или та, в которой аксиома выбора отвергается, а континуум нельзя даже вполне упорядочить. Ему предоставляются и иные возможности, например принять аксиому выбора и отвергнуть гипотезу континуума, хотя в этом случае он и обязан считать, что континуум имеет свое место на шкале трансфинитов, но где оно находится, неизвестно.
Интервал:
Закладка: