Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
- Название:Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2019
- Город:Москва
- ISBN:978-5-389-17644-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности краткое содержание
Если вы примете приглашение Ласло Мерё, вы попадете в мир, в котором чудеса — это норма, а предсказуемое живет бок о бок с непредсказуемым. Попутно он раскрывает секреты математики фондовых рынков и объясняет живо, но математически точно причины биржевых крахов и землетрясений, а также рассказывает, почему в «черных лебедях» следует видеть не только бедствия, но и возможности.
(Альберт-Ласло Барабаши, физик, мировой эксперт по теории сетей)
Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Умения людей с разными уровнями талантливости различаются словно небо и земля. Например, необычайно талантливый программист может превосходить программиста среднеталантливого на целый порядок по эффективности. Это до некоторой степени удивительно. Ситуация такая же, как если бы человек ростом 190 см оказался в десять раз более эффективным — или в десять раз более каким угодно, — чем человек ростом всего 183 см. По-видимому, разница в росте не имеет столь радикальных последствий даже для баскетболистов, для которых большой рост является преимуществом. Однако уровень таланта оказывается чрезвычайно важен.
Что же нам делать с концепцией гениальности? Возможно, она подойдет для обозначения необычайно высокого уровня талантливости. Когда говорят об «интеллекте уровня гения», этот интеллект определяют по линейной шкале: гениальность подобна обычной разумности, только гораздо больше. Но, возможно, гениальность в чем-то отличается и от разумности, и от талантливости качественно. Может быть, гения точнее определить как человека, способного придумывать такие вещи, о которых никогда не помыслят даже необычайно талантливые люди? Представим себе Ньютона или Эйнштейна, Моцарта или Пикассо.
Хотя представление о сферической Земле существовало еще в Античности, а идея о гравитации как измеримой силе восходит по меньшей мере к Галилею, то есть к концу XVI века, именно Ньютон позволил понять, как именно может быть устроено мироздание с круглой Землей и почему люди, находящиеся на ее «нижней стороне», не падают с нее — или, если они каким-то образом приклеены к поверхности Земли, как они могут жить вверх ногами, а вся их кровь не изливается им в голову. Вопрос о людях, живущих вниз головой, на самом деле был трудной загадкой. Церковь не принимала концепцию круглой Земли, вращающейся вокруг Солнца, не из одного только злобного упрямства. Дело не только в том, что такие идеи противоречили богословским догматам; на научные вопросы, которые следовали из такой космологии, также не было убедительных ответов. Ньютон разрешил это затруднение, предложив закон всемирного тяготения: идею, что одна и та же сила вызывает вращение планет вокруг Солнца и удерживает ноги человека на земле. Для этого требовался гений, способный открыть концепцию, о которой никто до него не мог и помыслить, и дать общее объяснение явлениям, казавшимся до этого и не связанными друг с другом и необъяснимыми.
В этом смысле гений кажется явлением уникальным и неповторимым — то есть, в нашей терминологии, чудом. И потому мы еще раз убеждаемся, что чудеса все же существуют, ведь время от времени, пусть и не слишком часто, рождаются ньютоны или эйнштейны. Это люди не просто необычайно талантливые. Они не только знают гораздо больше, чем выучили; они также знают нечто, чему нельзя научить, нечто выходящее за пределы самого смелого воображения их современников.
Сегодняшняя гениальная идея завтра будет общеизвестной истиной. Теорию, которую мог разработать только гений, через некоторое время будут преподавать тысячи весьма далеких от гениальности учителей. Сначала, когда идеи новы и революционны, понять их и передать новые знания может только великий учитель. Но со временем те, кого интересует эта теория, совершенствуют и упрощают ее и находят новые способы ее объяснения, которые значительно облегчают ее преподавание. В оригинале «Начала» Ньютона очень трудны для понимания. Я читал эту книгу и могу засвидетельствовать, что читать ее невозможно. Но материалы, изложенные в ней, ежегодно преподают тысячам и тысячам старшеклассников и первокурсников. Человек гениальный открывает новую территорию, а люди необычайно талантливые следуют по пути, проложенному гением. Позднее по их следам идут люди, талантливые лишь умеренно.
Я утверждал, что гений есть чудо, но мне по-прежнему нечего ответить моему другу Алексу, убежденному, что никаких чудес не бывает. Алекс сказал бы: «То, что является чудом для тебя, совсем не обязательно будет чудом для человека гораздо более талантливого». Действительно, мне кажется чудом пятиметровый прыжок в длину, но существуют спортсмены, способные прыгнуть дальше чем на восемь метров, так что даже восьмиметровый прыжок чудом не считается [22] Сейчас мировой рекорд по прыжкам в длину у мужчин, установленный в 1991 г. Майком Пауэллом, составляет 8 м 95 см.
.
Было бы полезно попытаться каким-то образом выразить редкость появления чудес в численной форме. Для этого давайте посетим две воображаемых страны, в которых мы сможем узнать о тихих, спокойных средних величинах и диких, буйных крайностях. Назовем их Тихонией и Диконией, миром тихим и миром диким.
Тихония и дикония
Попробуйте угадать ответы на следующие вопросы:
Каков средний рост людей, которые выше двух метров?
Каков средний возраст людей, которые старше девяноста лет?
Каков средний чистый капитал людей с «очень крупным чистым капиталом», то есть имеющих по меньшей мере $5 млн оборотных финансовых средств? В мире порядка двадцати миллионов таких людей.
Какова средняя стоимость акционерного капитала компаний, имеющих активов более чем на $5 млрд? В последние годы в мире насчитывается от семи до восьми сотен таких компаний.
Первый и последний из этих вопросов появлялись в «Черном лебеде» Талеба. Ответов на них там, однако, не было. Мы жадничать не будем и приведем ответы на все вопросы: 203 см, 93 года, $80 млн и $27 млрд.
Из этих ответов мы начинаем видеть, что математика, действующая в первых двух вопросах, радикально отличается от той, что работает во второй паре. Хотя обе пары вопросов касаются конкретных численных данных, кажется, что они относятся к разным мирам. В чем же их отличия? Прежде всего мы замечаем, что в случае роста или возраста нет по-настоящему больших отклонений от среднего. Не бывает людей пятиметрового роста, и никто не доживает до 969 лет, возраста библейского патриарха Мафусаила. С другой стороны, вне всякого сомнения, существуют очень богатые люди — например, пресловутые братья Кох, состояние каждого из которых составляет около $40 млрд. Существуют и чрезвычайно дорогостоящие корпорации, например компания Apple, рыночная стоимость которой в августе 2012 года составила около $750 млрд. В коммерческой деятельности бывают приливы и отливы, и тремя месяцами позже стоимость Apple упала ниже $450 млрд. Такое крупное в процентном исчислении снижение было бы катастрофическим для большинства частных лиц, но компания без труда выжила и оправилась от него.
Талеб называет страну, в которой таких крупных отклонений от среднего не бывает, «Среднестаном», а то место, в котором такие чудовищные аномалии случаются, — «Крайнестаном». Я ничего не имею против названия Крайнестан, но слово «Среднестан» кажется мне неудачным. Талеб относится к Среднестану с пренебрежением. Он отвергает его методы и образ мыслей несмотря на то, что они дают вполне успешные результаты. Кажется, что внезапное превращение Ливана, бывшего в течение более чем столетия мирным и процветающим Среднестаном, в преисполненный насилия Крайнестан, свидетелем которому стал Талеб, внушило ему ненависть ко всему «среднему» и недоверие к теориям, существующим в таких местах.
Читать дальшеИнтервал:
Закладка: