Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
- Название:Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2019
- Город:Москва
- ISBN:978-5-389-17644-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности краткое содержание
Если вы примете приглашение Ласло Мерё, вы попадете в мир, в котором чудеса — это норма, а предсказуемое живет бок о бок с непредсказуемым. Попутно он раскрывает секреты математики фондовых рынков и объясняет живо, но математически точно причины биржевых крахов и землетрясений, а также рассказывает, почему в «черных лебедях» следует видеть не только бедствия, но и возможности.
(Альберт-Ласло Барабаши, физик, мировой эксперт по теории сетей)
Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поскольку, как выяснилось, гауссова кривая так хорошо описывает столь многие природные явления, казалось разумным применить ее и к явлениям экономическим. В конце концов статистическая идеология, на которой основано гауссово распределение, стала настолько непререкаемой догмой, что в течение приблизительно столетия создателям экономических моделей даже в голову не приходило использовать что-либо другое. Однако оказалось, что распределение Гаусса не вполне отражает механизмы, действующие в экономике. И это относится не только к экономике: за пределами области применимости этой конкретной модели лежат и многие другие явления. Во время финансового кризиса 2008 года я слышал от разных финансовых гуру, что «такого кризиса нельзя ожидать даже раз в десять тысяч лет». Хотя десять тысяч лет мне исполнится еще не скоро, я слышал такие же заявления по меньшей мере раза четыре, а то и пять — например, во время кризисов 1987 и 1998 годов, а также после 11 сентября. Видимо, что-то тут не так.

Илл. 1.Последняя банкнота достоинством в десять немецких марок (перед заменой марки на евро) с портретом Гаусса; на ней также изображена кривая нормального гауссова распределения

Илл. 2.Гауссова кривая, или нормальное распределение
(График Йожефа Бенце)
Не так тут то, что распределение Гаусса не предусматривает потрясений, возникающих, казалось бы, на ровном месте. Оно весьма хорошо предсказывает развитие событий в Тихонии, но не в состоянии справиться с бурным миром Диконии. Для описания таких кризисов нам нужна принципиально другая модель. На самом деле такие модели есть, и существуют они так же давно, как и гауссово распределение, ставшее столь надежной основой тихонской науки.
Возвращаясь к нашей аналогии с началом драки в пивной, можно сказать, что обитатели Тихонии понимают: увеличение частоты громких выкриков означает, что мирный мир Тихонии вот-вот сменится хаотическим миром Диконии. Тут почти не важно, идет ли речь о кабацких драках или экономических показателях. В обоих случаях мы находимся в пределах области применимости новой модели, которую мы создали для описания экстремальных ситуаций, возникающих в Диконии.
Наука Тихонии достигла таких высот, что ей удалось разработать модели, применимые не только к явлениям, обычным для самой Тихонии, но и к хаотическим событиям, происходящим в Диконии. В этом состоит одна из причин, по которым нам не следует пренебрегать тихонской наукой: модели Диконии были созданы наукой Тихонии. Методы остаются в точности теми же самыми. Отличаются только модели.
Распределение Коши
Портрета математика Огюстена Луи Коши (илл. 3) не встретишь на банкнотах, хотя он был изображен на французской почтовой марке, выпущенной в честь двухсотлетия со дня его рождения, а его имя можно найти в числе семидесяти двух имен французских естествоиспытателей, инженеров и математиков, выгравированных на Эйфелевой башне. Имя Коши, как и имя Гаусса, входит в число тех, что чаще всего встречаются студентам инженерных и математических факультетов. Приблизительно через 150 лет после Ньютона он устранил многие из неоднозначностей дифференциального и интегрального исчисления и придал этой науке форму, пригодную для преподавания на начальных университетских курсах.

Илл. 3.Огюстен Луи Коши (1789–1857), французский математик и физик
Кривую, которую построил Коши, можно видеть на илл. 4, и на первый взгляд она кажется очень похожей на кривую Гаусса. Когда я говорил выше, что называть распределение Гаусса «колоколообразной кривой» неточно, я как раз и имел в виду распределение Коши и многие другие кривые, форма которых также напоминает колокол. Казалось бы, ничто не заставляет предположить, что это распределение способно описывать гораздо более дикий мир, чем гауссова кривая.
При ближайшем рассмотрении оказывается, что на расстоянии трех стандартных отклонений от среднего кривая Коши не так близка к оси абсцисс, как кривая Гаусса, хотя и она подходит все ближе и ближе к оси при все бо́льших и бо́льших отклонениях. Так ли важно, насколько стремительно кривая приближается к оси абсцисс? Неужели сама природа модели, которую описывает кривая, фундаментально зависит от быстроты приближения этой кривой к нулю? Как мы вскоре увидим, это именно так.

Илл. 4.Распределение Коши
(График Йожефа Бенце)
Из всех математических и физических явлений, которые порождают кривую Коши, возможно, легче всего понять следующее. Предположим, женщина с винтовкой — назовем ее Фиби, в честь великой американской женщины-снайпера Фиби Энн Моузи, более известной под именем Энни Оукли, — стоит на некотором расстоянии — скажем, в десяти метрах — от стены, которая продолжается до бесконечности в обоих направлениях. Она закрывает глаза, крутится на месте и, остановившись под случайным углом к стене, стреляет в ту сторону, куда направлена в этот момент ее винтовка. Разумеется, в половине случаев она вообще промахнется, потому что будет стоять спиной к стене, но мы рассмотрим только те выстрелы, которые в стену попадают. Чаще всего пули будут бить в стену сравнительно недалеко от стрелка. Половина попаданий придется на 20-метровый участок, центром которого будет ближайшая к нашей героине точка стены. И если провести перпендикуляр от Фиби к этой точке, пули полетят по обе стороны от него под углом, не превышающим 45°. Поэтому самая высокая часть у кривой Коши, как и у кривой Гаусса, находится в середине. Но если винтовка Фиби окажется почти параллельно стене, то ее пуля поразит гораздо более удаленную точку. Распределение Коши описывает среднюю частоту попадания в каждую точку стены [24] Ср. Mandelbrot and Hudson (2004), р. 37–39.
.
Основное различие между моделями Гаусса и Коши состоит в том, что в распределении Гаусса очень удаленные части стены оказываются в высшей степени безопасными. Если Фиби стоит в 10 м от стены и стреляет раз в секунду, причем угол, под которым она стреляет, задан нормальным распределением, то до попадания в точку, расположенную в 65 м или дальше, пройдет в среднем 10 000 лет, а в случае, если угол определяется распределением Коши, Фиби поразит отметку в 65 м в среднем всего за 21 с. Более того, достижение расстояния 1000 м или более займет в среднем всего 5 минут, 10 000 м — 52 минуты, 100 км — 9 часов, а 1000 км — всего лишь 3,6 суток. Таким образом, если при распределении Гаусса мы в безопасности уже чуть менее чем в сотне метров от винтовки Фиби, то в сценарии Коши нам не вздохнуть спокойно, даже будь мы в тысяче километров от нее.
Читать дальшеИнтервал:
Закладка: