Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков
- Название:Значимые фигуры. Жизнь и открытия великих математиков
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9060-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков краткое содержание
Значимые фигуры. Жизнь и открытия великих математиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
…здесь содержится простейшее и полезнейшее в арифметике, постоянно необходимое людям в случаях наследования, завещаний, раздела имущества, судебных тяжб и торговли и в любых сделках друг с другом или когда речь идет об измерении земель, рытье каналов, геометрических расчетах и других вещей разных сортов и типов.
Все это не слишком похоже на книгу по алгебре. И правда, непосредственно алгебра занимает в ней лишь небольшую часть. Аль-Хорезми начинает с объяснения чисел в очень простых выражениях – единицы, десятки, сотни – на том основании, что «когда я думаю о том, в чем люди обычно нуждаются при расчетах, я понимаю, что это всегда число». Вообще, это не ученый трактат для мужей науки, но популярная математическая книга, практически учебник, который пытается не только информировать, но и обучать обычных читателей. Именно этого хотел халиф, и именно это он получил. Аль-Хорезми не рассматривал свою книгу как результат работы на переднем крае исследовательской математики. Но мы сегодня именно так смотрим на ту ее часть, которая посвящена аль-джебре. Это самый глубокий раздел книги: систематическое развитие методов решения уравнений с некоторой неизвестной величиной.
Собственно термин «аль-джебр», который обычно переводят как «дополнение», относится к приему добавления одного и того же слагаемого к обеим частям уравнения с целью его упрощения. «Аль-мукабала», или «уравновешивание», относится к переносу одного из слагаемых с одной стороны уравнения на другую сторону (но с противоположным знаком) и к сокращению подобных членов в обеих частях уравнения.
К примеру, если уравнение в современной символьной записи выглядит как
x – 3 = 7,
то аль-джебра разрешает нам добавить по 3 к обеим сторонам уравнения и получить
x = 10,
что в данном случае решает уравнение. Если уравнение выглядит как
2 x 2+ x + 6 = x 2+ 18,
то аль-мукабала позволяет нам перенести 6 с левой стороны уравнения на правую, только со знаком минус, и получить
2 x 2+ x = x 2+ 12.
Вторая аль-мукабала позволяет нам перенести x 2из правой части уравнения в левую и вычесть уже его, получив
x 2+ x = 12,
что проще, но еще не дает решение уравнения.
Я повторю, что аль-Хорезми не использует никаких символов . Отец алгебры на самом деле не делал ничего из того, что сегодня большинство из нас считает алгеброй. Он все описывал словами. Конкретные числа были единицами , неизвестная величина, которую мы называем x , называлась у него корнем , а наш x 2назывался квадратом . Приведенное уравнение в этих терминах выглядело бы так:
квадрат плюс корень равно двенадцать единиц ,
и без всяких символов. Так что следующая задача – объяснить, как от уравнения подобного типа перейти к ответу. Аль-Хорезми подразделяет уравнения на шесть типов, причем типичный случай представляет собой «квадраты и корни равняются числам», то есть что-то вроде x 2+ x = 12.

Затем он переходит к анализу каждого типа уравнений по очереди, причем решает их с использованием смеси алгебраических и геометрических методов. Так, чтобы решить уравнение x 2+ x = 12, аль-Хорезми рисует квадрат, который должен представлять x 2(левый рисунок). Чтобы прибавить к этому корень x , он пририсовывает к квадрату четыре прямоугольника, каждый со сторонами x и (средний рисунок). Получившаяся фигура наводит на мысль «завершить квадрат», присоединив сюда же четыре «уголка» – маленькие квадратики со стороной
и площадью
Так что он добавляет
к левой части уравнения (правый рисунок). По правилу аль-джебр он должен также прибавить
и к правой части уравнения то, в результате чего справа становится
Теперь

Извлечем квадратный корень из обеих частей уравнения и получим

так что x = 3. Сегодня мы взяли бы еще отрицательный квадратный корень, и получили второе решение, x = –4. Отрицательные числа уже начинали появляться в трудах ученых периода аль-Хорезми, но сам он их не упоминает.
Такой подход был бы понятен и вавилонянам, и грекам, поскольку они и сами в свое время занимались примерно тем же. На самом деле существуют сомнения относительно того, был ли аль-Хорезми знаком с «Началами» Евклида. По идее, должен был быть знаком, поскольку аль-Хаджжадж – другой ученый из «Дома мудрости» – перевел Евклида на арабский, когда аль-Хорезми был молодым человеком. Но с другой стороны, основной задачей «Дома мудрости» был именно перевод , и его работники не были обязаны читать труды, переведенные их коллегами. Некоторые историки утверждают, что геометрия аль-Хорезми по стилю не соответствует Евклидовой, и это свидетельствует о том, что ученый не был знаком с оригиналом. Но, я повторяю, «Алгебра» – популярная книга о математике, так что она и не должна была бы следовать аксиоматическому стилю Евклида, даже если бы сам аль-Хорезми знал Евклида назубок. Во всяком случае идея достраивания квадрата восходит еще к вавилонянам и позаимствовать ее можно было из множества разных источников.
Почему же тогда многие историки считают именно аль-Хорезми отцом алгебры? Особенно с учетом того, что он не использует никаких символов? И у него имеется сильный конкурент, грек Диофант. В его «Арифметике» – серии книг о решении уравнений в натуральных или рациональных числах, написанной около 250 г., – символы используются. Один из ответов состоит в том, что главной областью интересов Диофанта была теория чисел да и символы его были, по существу, простыми сокращениями. Однако более глубокий ответ, который мне кажется и более убедительным, заключается в том, что аль-Хорезми часто, хотя и не всегда, приводит универсальные методы решения, тогда как его предшественники, как правило, брали пример с конкретными числами и решали его. Читателю оставалось самому выводить общее правило. Так что результат приведенного выше геометрического решения мог бы выглядеть примерно так: «Возьмите 1, поделите на 2, получится возведите ее в квадрат, получится
затем добавьте по
к каждой стороне», – и читатель должен будет сам догадаться, что общее правило состоит в том, чтобы заменить первоначальную 1 половинкой коэффициента при x , возвести результат в квадрат, прибавить результат к обеим сторонам уравнения и т. д. Конечно, при обучении преподаватель разъяснил бы решение на таком уровне обобщения и закрепил результат, заставив ученика прорешать множество других примеров.
Интервал:
Закладка: