Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков
- Название:Значимые фигуры. Жизнь и открытия великих математиков
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9060-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков краткое содержание
Значимые фигуры. Жизнь и открытия великих математиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В течение двух недель я старался доказать, что невозможна никакая функция, которая была бы подобна тем, которым я впоследствии дал название фуксовых функций; в то время я был еще весьма далек от того, что мне было нужно. Каждый день я усаживался за свой рабочий стол, проводил за ним один-два часа, перебирал большое число комбинаций и не приходил ни к какому результату. Но однажды вечером я выпил, вопреки своему обыкновению, чашку черного кофе; я не мог заснуть; идеи возникали во множестве; мне казалось, что я чувствую, как они сталкиваются между собой, пока, наконец, две из них, как бы сцепившись друг с другом, не образовали устойчивое соединение. Наутро я установил существование класса функций Фукса, а именно тех, которые получаются из гипергеометрического ряда; мне оставалось лишь сформулировать результаты, что отняло у меня всего несколько часов [25] Пуанкаре А. О науке. М.: Наука, 1990.
.
Затем он описывает в некоторых подробностях собственный опыт, указывая с самого начала, что слушателям (или читателям) не обязательно понимать, что означают технические термины в его рассказе. Можно просто считать их заместителями неких продвинутых математических понятий.
Я захотел затем представить эти функции в виде частного двух рядов; это была вполне сознательная и обдуманная мысль; мною руководила аналогия с эллиптическими функциями. Я задал себе вопрос: «Каковы должны быть свойства этих рядов, если они существуют?» – и я пришел без труда к образованию рядов, названных мною тета-фуксовыми функциями. В эту пору я покинул Кан, где я тогда жил, чтобы принять участие в геологической экскурсии, организованной Горным институтом. Среди дорожных перипетий я забыл о своей математической работе. По прибытии в Кутанс мы взяли омнибус, чтобы поехать в какое-то место. И вот в тот момент, когда я заносил ногу на ступеньку омнибуса, мне пришла в голову идея – хотя мои предыдущие мысли, кажется, не имели с нею ничего общего, – что те преобразования, которыми я воспользовался для определения фуксовых функций, тождественны преобразованиям неевклидовой геометрии. Я не проверил тогда этой идеи; для этого у меня не было времени, так как, едва усевшись в омнибус, я возобновил начатый разговор, тем не менее я сразу почувствовал полную уверенность. Возвратясь в Кан, я для очистки совести сделал проверку; идея оказалась верной [26] Пуанкаре А. Указ. соч.
.
Рассказ продолжают еще два случая внезапного озарения.
Размышляя задним числом над этим и другими открытиями, Пуанкаре выделяет три фазы математического открытия: подготовка, инкубационный период и просветление. То есть: проведи сознательную работу, чтобы погрузиться в задачу, дойти до предела и остановись; подожди, пока подсознание все это переработает; а потом у тебя в голове вспыхнет маленькая лампочка и наступит момент озарения.
Анализ Пуанкаре, содержащийся в его лекциях, статьях и книгах, до сих пор остается одним из лучших источников информации о работе великого математического ума.
Анри Пуанкаре родился в Нанси (Франция). Его отец Леон был профессором медицины в Университете Нанси, мать звали Эжени (урожденная Лануа). Его двоюродный брат Раймон Пуанкаре стал премьер-министром, а во время Первой мировой войны был президентом Французской Республики. В раннем возрасте Анри переболел дифтерией, и, пока не поправился, его дома обучала мать. Затем он отправился в лицей, где провел 11 лет. Анри был первым по всем без исключения предметам, а в математике – просто неподражаем. Учитель называл его «монстром математики», и национальные конкурсы Анри тоже выигрывал. У мальчика была великолепная память; он мог представить себе любую сложную трехмерную фигуру, что компенсировало ему в какой-то степени зрение – настолько слабое, что во время урока он едва видел классную доску, не говоря уже о том, что было на ней написано.
В 1870 г., когда Франко-прусская война была в самом разгаре, юный Пуанкаре служил вместе с отцом в медицинской части. В 1871 г. закончилась война, в 1873 г. Анри поступил в Париже в Политехническую школу, которую окончил в 1875 г. Затем он был принят в Горную школу (École des Mines), где изучал горное дело и вновь математику. В 1879 г. он получил диплом горного инженера. Тот год был богат событиями. Пуанкаре стал горным инспектором Горного корпуса по области Везуль; он, в частности, проводил официальное расследование несчастного случая в Маньи, когда погибло 18 шахтеров. Кроме того, Пуанкаре продолжал под руководством Эрмита работать над докторской диссертацией; он занимался уравнениями в конечных разностях – аналогом дифференциальных уравнений, в которых время изменяется не непрерывно, а дискретными шагами. Он распознал потенциал уравнений, описывающих движение многих тел под действием гравитации, к примеру Солнечной системы, и предвидел будущее развитие в этой области; важность этих исследований многократно возросла, когда компьютеры стали достаточно мощными, чтобы взять на себя громадное число необходимых расчетов.
После получения докторской степени Пуанкаре получил место младшего преподавателя математики в Университете Кана, где встретил свою будущую жену Луизу Пулен д’Андеси. Они поженились в 1881 г. и родили четверых детей – трех девочек и мальчика. К 1881 г. Пуанкаре успел получить куда более престижную работу в Университете Парижа, где за короткое время вырос в одного из ведущих математиков своего времени. Пуанкаре обладал прекрасной интуицией, и лучшие идеи, как правило, приходили к нему в те моменты, когда он думал о чем-то другом, – вспомните хотя бы историю с омнибусом. Он написал несколько научно-популярных бестселлеров: «Наука и гипотеза» (1901 г.), «Ценность науки» (1905 г.), «Наука и метод» (1908 г.). Безусловно, Пуанкаре стоял выше большинства других математиков того времени во многих областях, включая теорию комплексных функций, дифференциальные уравнения, неевклидову геометрию, топологию – которую он, по существу, основал, – и в применении математики в таких разных областях, как электричество, упругость, оптика, термодинамика, теория относительности, квантовая теория, небесная механика и космология.
Топология, если вы помните, – это «геометрия резинового листа». Евклидова геометрия строится вокруг свойств, которые сохраняются при жестких перемещениях, таких как длины, углы и площади. Топология отбрасывает все это и ищет свойства, которые, напротив, сохраняются при непрерывных преобразованиях, таких как сгибание, растягивание, сжатие и закручивание. К таким свойствам относятся связность (один кусок или два), наличие узлов и число отверстий (одно или больше). Предмет изучения здесь может показаться туманным, но свойства непрерывности фундаментальны – возможно, даже более фундаментальны, чем свойства симметрии. В XX в. топология наряду с алгеброй и анализом стала одним из трех китов теоретической математики.
Читать дальшеИнтервал:
Закладка: