Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Тут можно читать онлайн Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-455-4
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - описание и краткое содержание, автор Йэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать книгу онлайн бесплатно, автор Йэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как развивалась алгебра? Сначала это были задачи и методы. Со временем она приобрела символическую систему обозначений, которую мы считаем ее главным достоинством. Было много систем обозначений, но постепенно одна вытеснила конкурентов. Само название «алгебра» тоже возникло в процессе, и оно имеет арабские корни (об этом говорит начальное «аль», арабский эквивалент артикля the, что и указывает на происхождение).

Табличка из Старого Вавилона с клинописной записью алгеброгеометрической - фото 53

Табличка из Старого Вавилона с клинописной записью алгебро-геометрической задачи

Уравнения

То, что мы сейчас называем решением уравнений (когда неизвестная величина должна быть найдена на основе имеющейся информации), почти так же старо, как и арифметика. Есть косвенные доказательства тому, что вавилоняне умели решать весьма сложные уравнения еще в 2000 г. до н. э., и прямые свидетельства решения несложных задач в виде клинописных табличек, датируемых примерно 1700 г. до н. э.

Сохранившаяся часть таблички YBC 4652, из периода Старого Вавилона, содержит 11 простых задач для решения, а по сопроводительному тексту можно понять, что изначально их было двадцать две. Вот типичный вопрос:

«Я нашел камень, но не знаю его вес. После того как я взял его вес шесть раз, добавил 2 джина и добавил одну треть от одной седьмой [этого нового веса], умноженной на 24, я взвесил его. В результате получилось 1 ма-на . Сколько весил исходный камень?»

Вес 1 ма-на равен 60 джинов .

В современных обозначениях мы примем за x вес исходного камня в джинах . Тогда решение будет выглядеть так:

(6 x + 2) + 1/ 3× 1/ 7× 24(6 x + 2) = 60,

и стандартные алгебраические методы дают результат 4 1/ 3 джина . На табличке есть этот ответ, но нет решения, объясняющего, как он был получен.

Явно его получили не с использованием символических методов, похожих на современные, поскольку ниже в табличке прописаны методы решения с точки зрения типичных учебных примеров: «Поделите пополам это число, добавьте сумму этих двух, извлеките квадратный корень…» и т. д.

Эта задача, заодно с прочими на табличке YBC 4652, представляет то, что сейчас мы зовем линейными уравнениями: неизвестное x входит в него только в первой степени. Любое из линейных уравнений можно представить в виде

ax + b = 0,

с решением x = – b/a . Но в древние времена, когда не было понятий отрицательных чисел и символьных операций, поиск результата был не так прост. Даже сейчас некоторые школьники не сразу решат задачи с таблички YBC 4652.

Интереснее квадратные уравнения, в которых неизвестное возведено во вторую степень – квадрат. В современной формулировке это уравнение вида:

ax 2+ bx + c = 0,

и здесь тоже есть стандартная формула для вычисления x . Подход древних вавилонян к этим уравнениям изложен в задаче на табличке BM 13901:

«Я семь раз добавил сторону моего квадрата и 11 раз – его площадь, [получив] 6;15».

Здесь 6;15 – упрощенная форма вавилонской шестидесятиричной системы и означает 6 плюс 15/ 60, или 6 1/ 4в современных обозначениях. Предлагаемое решение начинается так:

«Запиши 7 и 11. Умножь 6;15 на 11, [получи] 1,8;45. Раздели 7 на 2, [получи] 3;30 и 3;30. Перемножь, [и получи] 12;15. Сложи [это] с 1,8;45, [получи] результат 1,21. Это есть квадрат 9. Вычти 3;30, которое ты перемножал, из 9. Результат вычисления 5;30. Величину, обратную к 11, нельзя найти. На что надо умножить 11, чтобы получить 5;30? [Ответ равен] 0;30, сторона квадрата равна 0;30».

Обратите внимание: табличка указывает читателю, что делать, но не почему. Это не более чем алгоритм. Кому-то необходимо было понять, как это работает, прежде всего чтобы записать способ решения. Но, будучи однажды открытым, он становится доступным каждому обученному. Мы так и не знаем, то ли вавилоняне заучивали алгоритм наизусть, то ли должны были сами объяснять, почему он работает.

Приведенный выше алгоритм выглядит размытым, однако интерпретировать его всё же проще, чем мы могли бы подумать. И здесь очень помогает использование рациональных чисел: мы сразу понимаем, какие правила пошли в ход. Чтобы обнаружить их, достаточно просто привести всё к системе. В современной записи имеем:

a = 11, b = 7, c = 6;15 = 6 1/ 4.

Тогда уравнение примет вид:

ax 2+ bx = c ,

соответственно с данными значениями для a, b и c . Нам нужно найти x . Вавилонское решение диктует нам следующее.

1. Умножить с на а , чтобы получить ас .

2. Разделить b на 2, чтобы получить b/ 2.

3. Возвести в квадрат b/ 2, чтобы получить b 2/ 4.

4. Сложить это с ас , что даст ас + b 2/ 4.

5. Извлечь из этого квадратный корень, чтобы получить

Укрощение бесконечности История математики от первых чисел до теории хаоса litres - изображение 54

6. Вычесть из этого b/ 2, чтобы получить

7 Разделить это на а и ответ будет Это эквивалентно формуле Вавилоняне - фото 55

7. Разделить это на а , и ответ будет

Это эквивалентно формуле Вавилоняне явно отдавали себе отчет в том что их - фото 56

Это эквивалентно формуле

Вавилоняне явно отдавали себе отчет в том что их решения являются неким - фото 57

Вавилоняне явно отдавали себе отчет в том, что их решения являются неким обобщением. Приведенный пример слишком сложен, и его можно считать специальным, подобранным только для данной задачи.

Как относились к своему методу сами вавилоняне и что о нем думали? Похоже, должна была быть некая упрощенная идея, лежавшая в основе такого сложного процесса. Возможно, хотя напрямую это и не доказано, что они изобрели некую геометрическую идею, дополняющую квадрат. Алгебраическая версия этого метода также рассматривается в наши дни. Для ответа на этот вопрос мы его для ясности запишем в виде x 2+ ax = b и приведем на рисунке его геометрическую интерпретацию.

Здесь квадрат и первый прямоугольник имеют высоту x их ширина равна - фото 58

Здесь квадрат и первый прямоугольник имеют высоту x ; их ширина равна соответственно x и a . Меньший прямоугольник имеет площадь b . По вавилонскому рецепту мы легко делим первый прямоугольник на две половины:

Два новых прямоугольника мы можем переместить и совместить с краями квадрата - фото 59

Два новых прямоугольника мы можем переместить и совместить с краями квадрата:

Получившаяся слева фигура так и просится быть дополненной до большого квадрата - фото 60

Получившаяся слева фигура так и просится быть дополненной до большого квадрата, с добавлением затененного квадрата.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Йэн Стюарт читать все книги автора по порядку

Йэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] отзывы


Отзывы читателей о книге Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres], автор: Йэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x