Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В 1936 г. Шлик погиб от руки студента-нациста, и у Гёделя случился нервный срыв (уже второй). Оправившись от болезни, Гёдель выступил с несколькими лекциями в Принстоне. В 1938 г. он вопреки желанию матери женился на Адели Поркерт и вернулся в Принстон после включения Австрии в состав Германии. После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. В 1940 г. он получил второй плодотворный результат, доказав, что отрицание континуум-гипотезы Кантора недоказуемо в стандартной аксиоматике теории множеств.
Он получил гражданство СШАв 1948 г. и провел остаток жизни в Принстоне. С годами он всё больше опасался за свое здоровье, пока не убедил себя в том, что кто-то пытается его отравить. Он отказался от пищи и скончался в больнице. До самого конца он любил вести философские диспуты со своими посетителями.
Любопытным следствием открытий Гёделя стал вывод, что всякая аксиоматическая система в математике должна быть неполна и вы никогда не сможете написать конечный список аксиом, который однозначно определит все истинные и ложные теоремы. Исключения не было: программа Гильберта не работала. Поговаривают, что сам Гильберт пришел в ярость, впервые услышав о работе Гёделя. Однако гневаться скорее стоило на себя, ведь основная идея в работе Гёделя была безупречна. (Техническое воплощение этой идеи оказалось очень сложным, но Гильберт всегда отлично справлялся с такими трудностями.) Скорее всего, Гильберт понял, что он должен был предвидеть появление теорем Гёделя.
Рассел свел на нет значение книги Фреге своим логическим парадоксом о сельском брадобрее, который бреет всякого, кто не бреется сам: множество всех множеств, не являющееся элементом самого себя. Гёдель свел на нет значение программы Гильберта другим логическим парадоксом – человека, который сказал: это утверждение ложно. По сути, это неразрешимое утверждение Гёделя – на котором строится всё остальное – теорема T, которая утверждает: «Эта теорема не может быть доказана».
Если всякая теорема не может быть ни доказана, ни опровергнута, то утверждение Гёделя T противоречиво в обоих случаях. Предположим, Т можно доказать. Тогда Т утверждает, что Т не может быть доказано, – противоречие! А если Т можно опровергнуть, то утверждение Т ложно, и будет ошибкой утверждать, что Т не может быть доказано. Получается, Т можно доказать, – снова противоречие. Следовательно, предположение о том, что всякую теорему можно доказать или опровергнуть, говорит нам, что Т может быть доказано тогда и только тогда, когда оно не может быть доказано.
К чему же мы пришли?
Теоремы Гёделя изменили наш взгляд на логические основания математики. Они заставили предположить, что кажущиеся нам сейчас неразрешимыми проблемы могут вообще не иметь решения: ни подтверждающего их, ни опровергающего, а вечно пребывать в чистилище неразрешимости. И такими предстают перед нами очень многие интересные проблемы. Однако эффект от работ Гёделя на практике так и не вышел далеко за пределы фундаментальной математики, в лоне которой и появился на свет. Математики продолжают искать доказательства для гипотез Пуанкаре и Римана, не жалея времени на открытие новых доводов за и против. Они отдают себе отчет в том, что проблема может оказаться неразрешимой, и даже могут заняться поисками доказательств этой неразрешимости, если найдут исходную точку. Однако большинство из известных нам неразрешимых проблем манят ученых именно неразрешимостью, и вряд ли кому-то удастся ее доказать.
Важнейший вариант гёделевых теорем о неполноте был открыт Аланом Тьюрингом. Их анализ очертил путь для создания первых компьютеров. В своей работе On Computable Numbers, with an application to the Entscheidungsproblem («О вычислимых числах, приложение к проблеме разрешения»), опубликованной в 1936 г., Тьюринг предложил формализацию алгоритмических вычислений – следующую заранее написанному алгоритму – в рамках так называемой машины Тьюринга. Это математическая идеализация устройства, которое пишет символы 0 и 1 на движущейся ленте, подчиняясь конкретным правилам. Он доказал, что проблема остановки машины Тьюринга – выполнится ли окончательное вычисление для данного ввода данных – неразрешима . А значит, нет такого алгоритма, который бы предсказал, остановится ли вычисление или нет.
Тьюринг доказал свой результат, предположив, что проблема остановки разрешима, и построив алгоритм, который останавливается тогда и только тогда, когда не останавливается. Вот и противоречие. Его результат показывает, что существуют ограничения для вычислимости. Некоторые философы расширили эти идеи для определения пределов рационального мышления, и было выдвинуто предположение, что сознание не может функционировать алгоритмически. Однако их аргументы пока не так уж и убедительны. Они показали, что наивно полагать, будто мозг работает как современный компьютер, хотя это не значит, что компьютер не может имитировать работу мозга.
По мере того как на основе предшествующих теорий математики постоянно строили всё новые конструкции, одна сложнее другой, сверхструктура математики начала раскалываться из-за нераспознанных предположений, которые на поверку оказались ложными. Для предотвращения коллапса требовалась серьезная работа по укреплению фундамента.
Последующие работы углубились в истинную природу чисел, двигаясь вспять от комплексных чисел к действительным, рациональным и, наконец, натуральным. Но и там процесс не закончился. Сами числовые системы подверглись пересмотру с точки зрения еще более простых составляющих – множеств.
Теория множеств принесла немало преимуществ, включая разумную, хотя и неортодоксальную систему бесконечных чисел. Она также открыла несколько фундаментальных парадоксов, связанных с понятием множества. Их решение не стало, как надеялся Гильберт, полным обоснованием аксиоматической математики и доказательством ее логической последовательности. Но оно доказало, что математика по природе своей имеет ограничения и некоторые задачи вообще не имеют решения . В результате нам пришлось кардинально изменить свое отношение к понятиям математической истины и определенности. И это прекрасно: лучше жить в осознании пределов наших возможностей, чем в обманчивом раю.
Глава 18. Насколько это вероятно?
В XX и начале ХХI в. математика развиваласьвзрывными темпами. За последние 100 лет в ней было сделано больше открытий, чем за всю предыдущую историю человечества. Даже для краткого их перечисления потребуются тысячи страниц, так что придется выбирать лишь некоторые примеры из обилия доступных сведений.
Читать дальшеИнтервал:
Закладка: