Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Одна из самых юных областей математики – теория вероятностей, изучающая возможности появления случайных событий. Это математика неопределенности. Первые робкие шаги делались на протяжении долгих веков: это и попытки вычислить с помощью комбинаторики шансы выигрыша в азартных играх, и методы повышения точности астрономических наблюдений, несмотря на ошибки наблюдателей, но только к началу XX в. теория вероятностей приобрела статус самостоятельной науки.
Вероятность и статистика
В настоящее время теория вероятностей – обширнейшая область математики, и ее прикладная ветвь, статистика, оказывает важное влияние на повседневную жизнь – возможно, более значительное, чем любой из прочих основных разделов математики. Статистика стала одним из главных аналитических методов даже в медицине. Ни одно лекарственное средство не допускается на рынок и ни один метод лечения не разрешается в больнице, пока клинические испытания не докажут их полную безопасность и эффективность. Здесь безопасность относительна: лечение может быть предложено больным, страдающим от смертельно опасного недуга, когда шансы на успех слишком малы, но не в менее тяжелых случаях.
Также теория вероятностей чаще всех прочих областей математики страдает от неверного толкования и искажений. Но ее точное и разумное применение приносит человечеству неоценимую пользу.
Игра случая
Некоторые вопросы из теории вероятностей уходят корнями в Античность. Из Средних веков до нас дошли записи дискуссий о шансе выбросить различные числа на двух игральных костях. Чтобы лучше представить себе, как это работает, начнем с одной кости. Предположим, она не доработана [8] Речь о том, что кость не подвергалась доработке, все грани одинаковы, ни одна не утяжелена. Прим. науч. ред.
– что очень трудно доказать – и на ней шесть чисел: 1, 2, 3, 4, 5 и 6, которые выпадают одинаково часто в конечном счете при длительной игре. В короткой игре такое равноправие невозможно: первый бросок, например, даст в результате только одно из чисел. Даже после шести бросков вы, скорее всего, не получите по одному разу каждое из чисел. Но в длинных сериях бросков, или попыток, мы вправе ожидать появления каждого числа примерно в каждом шестом броске, т. е. вероятность равна 1/ 6. Если этого не происходит, то у кости, вероятно, смещен центр тяжести.
Событие с вероятностью 1 достоверно, а с вероятностью 0 – невозможно. Все вероятности лежат между 0 и 1, и вероятность события обозначает долю в числе попыток, с которой происходит данное событие.
Вернемся к вопросу из Средних веков. Предположим, мы одновременно бросаем два кубика (как во многих играх – от костей до «Монополии»). Какова вероятность того, что сумма очков на них равна 5? По результатам вычислений с огромным числом аргументов и даже нескольких экспериментов получено число 1/ 9. Почему? Предположим, мы взяли две кости, красную и синюю. На каждой из них может независимо выпасть шесть разных чисел, итого получаем 36 возможных пар, и все с одинаковой вероятностью. Сочетания (красная + синяя), дающие 5, – 1 + 4, 2 + 3, 3 + 2, 4 + 1; это отдельные случаи, поскольку синяя кость выдает разные числа при каждом броске, как и красная. Значит, при большом количестве бросков мы ожидаем получить сумму, равную 5, в четырех случаях из 36: вероятность равна 4/36 = 1/ 9.
Другая давняя практическая проблема – как поделить ставки в азартной игре, если она по какой-то причине прервалась. Алгебраисты Возрождения Пачоли, Кардано и Тарталья оставили записи по этому вопросу. Позже шевалье де Мере задал тот же вопрос Паскалю, и тот обменялся с Ферма несколькими письмами на эту тему.
Из этих ранних работ следовал неявный вывод, какова вероятность и как ее подсчитать. Но всё это выглядело неопределенно и неубедительно.
Сочетания
Рабочее определение вероятности некоего события – относительное число случаев, в которых оно происходит. Если речь о кости, у которой может одинаково часто выпасть любая из шести граней, вероятность выпадения каждой грани равна 1/ 6. Более ранние работы по вероятности основаны на подсчете количества вариантов появления каждого события и делении его на общее число возможностей.
Главной проблемой здесь были сочетания. Скажем, если взять колоду из шести карт, сколько в ней будет разных подмножеств по четыре карты? Один из способов – перечислить все эти подмножества: если у нас карты с достоинством 1–6, получится:

т. е. их всего 15. Но такой метод слишком громоздкий для большего количества карт, и здесь нужно нечто более систематическое.
Представим, что мы выбираем по одному элементу из подмножества. Первый можно выбрать шестью способами, второй только пятью (один использован), третий – четырьмя, четвертый – тремя. Общее число выборов в этом порядке равно 6 × 5 × 4 × 3 = 360. Но каждое подмножество сосчитано здесь 24 раза: начав с 1234, далее мы найдем 1243, 2134 и т. д. и получим 24 способа (4 × 3 × 2) переставить четыре объекта. Значит, точный ответ будет 360/24, т. е. 15. Этот аргумент показывает, что количество способов выбрать m объектов из общего числа n объектов равно:

Это выражение называется биномиальным коэффициентом , потому что появляется и в алгебре. Если мы преобразуем его в таблицу, чтобы n -я строка содержала биномиальные коэффициенты

то результат будет выглядеть так.
В шестой (счет начинается с нуля) строке мы увидим числа 1, 6, 15, 20, 15, 6, 1.
Сравним с формулой
( x + 1) 6= x 6+ 6 x 5+ 15 x 4+ 20 x 3+ 15 x 2+ 6 x + 1,
и мы видим, что те же числа появляются как коэффициенты. Это не совпадение.
Треугольник чисел назван треугольником Паскаля, потому что обсуждался Паскалем в 1655 г. Однако известен он был гораздо раньше: первое упоминание в древнеиндийском шастре «Чандас шастра» датируется примерно 950 г. Также его знали персидские математики Аль-Караджи и Омар Хайям (в современном Иране его называют треугольником Хайяма).

Треугольник Паскаля
Теория вероятностей
Биномиальные коэффициенты с большим успехом были использованы в первой книге по теории вероятностей – труде под названием «Искусство предположений», написанном Якобом Бернулли в 1713 г. В книге автор поясняет столь необычное название.
Читать дальшеИнтервал:
Закладка: