Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эти два варианта выбора, «низко» для Строки и «посредине» для Столбца, представляют собой наилучший ответ игрока, сделавшего соответствующий выбор, на действие другого игрока. После такого выбора оба игрока не захотели бы по собственной инициативе переключаться на что-либо другое. Согласно определению некооперативной игры, игроки делают выбор независимо друг от друга; следовательно, такие односторонние изменения — все, что может предпринять каждый игрок. Но поскольку ни один из них к ним не склонен, было бы естественно называть данное положение вещей равновесием. В этом и состоит суть концепции равновесия Нэша.

Согласно несколько более формальной формулировке, равновесие Нэша [44]в игре представляет собой перечень стратегий (по одной на каждого участника), при котором ни один игрок не может увеличить выигрыш, выбрав другую стратегию из имеющихся в его распоряжении, если другие игроки придерживаются стратегий, оговоренных в этом перечне.

А. Дальнейшее разъяснение концепции равновесия Нэша

Для того чтобы лучше понять концепцию равновесия Нэша, давайте еще раз проанализируем игру на рис. 4.1. Возьмем какую-либо другую ячейку вместо ячеек «низко», «посредине», например ячейку, в которой Строка выбирает вариант «высоко», а Столбец — «слева». Может ли это сочетание стратегий быть равновесием Нэша? Нет, потому что, если Столбец применит стратегию «слева», Строка при выборе стратегии «внизу» вместо «высоко», которая обеспечивает выигрыш 4, получит более высокий выигрыш 5. Точно так же сочетание стратегий «внизу», «слева» не будет равновесием Нэша, поскольку Столбец может извлечь больше выгоды, перейдя на стратегию «справа» и тем самым увеличив свой выигрыш с 6 до 7.

Определение равновесия Нэша не требует, чтобы равновесные варианты выбора обязательно были лучше всех имеющихся вариантов. На рис. 4.3 отображена та же ситуация, что и на рис. 4.1, за одним исключением: выигрыш Строки от стратегий «внизу», «посредине» изменился на 5, то есть стал таким же, как и для стратегий «низко», «посредине». По-прежнему верно то, что при выборе Столбцом варианта «посредине» Строка не может добиться большего , чем в случае выбора варианта «низко». Следовательно, ни у одного игрока нет оснований для изменения действия в результате исхода «низко», «посредине», что позволяет квалифицировать данный исход как равновесие Нэша [45].

Рис. 4.3. Вариант игры, представленной на рис. 4.1, с равными выигрышами

Однако важно учесть, что равновесие Нэша не всегда оптимально для обоих игроков. На рис. 4.1пара стратегий «внизу», «справа» обеспечивает выигрыши 9, 7, которые лучше для обоих игроков, чем выигрыши 5, 4 при равновесии Нэша. Тем не менее, играя независимо друг от друга, игроки не смогут придерживаться именно этих стратегий. Если Столбец предпочтет вариант «справа», Строка может захотеть заменить вариант «внизу» на «низко» и выиграть 12 вместо 9. Получение выигрышей 9, 7 потребует кооперативного действия, которое сделало бы такой «обман» невозможным. Мы рассмотрим данный тип поведения чуть ниже (и более подробно в главе 10), а пока просто хотим указать на тот факт, что равновесие Нэша может не соответствовать общим интересам игроков.

Чтобы закрепить понимание концепции равновесия Нэша, давайте еще раз посмотрим на рис. 4.2, отображающий игру в американский футбол. Если защита выберет стратегию «защита в случае паса», то лучший вариант для нападающих — «короткий пас» (выигрыш 5,6 против 5, 4,5 или 3). И наоборот, если команда нападения предпочтет вариант «короткий пас», то лучший вариант для защиты — «защита в случае паса», которая позволит команде нападения набрать всего 5,6 ярда, тогда как при выборе вариантов «защита в случае пробежки» и «блиц» команда защиты уступила бы 6 и 10,5 ярда соответственно. (Не забывайте, что записи в каждой ячейке таблицы игры с нулевой суммой — это выигрыши игрока под именем Строка, поэтому самый лучший вариант выбора для Столбца — тот, который обеспечивает самый низкий, а не самый высокий показатель.) В данной игре сочетание стратегий «короткий пас», «защита в случае паса» — это равновесие Нэша, а полученный выигрыш команды нападения составляет 5,6 ярда.

Как вычислить равновесие Нэша в играх? Для этого можно проверить каждую ячейку на наличие стратегий, удовлетворяющих равновесию Нэша. Такой систематический анализ надежен, но утомителен, за исключением случаев, когда он выполняется в контексте простых игр или с помощью хорошей компьютерной программы. К счастью, существуют и другие методы, применимые к особым типам игр, которые позволяют не только быстро отыскать равновесие Нэша, но и лучше понять процесс размышлений, посредством которого формируются убеждения, а затем и выбор. Мы проанализируем эти методы в следующих разделах.

Б. Равновесие Нэша как система убеждений и выбор вариантов

Прежде чем приступать к дальнейшему изучению и применению концепции равновесия Нэша, попробуем прояснить то, что, возможно, тревожит некоторых из вас. Мы сказали, что в равновесии Нэша каждый игрок выбирает свой лучший ответ на выбор другого игрока. Но выбор делается одновременно. Тогда как игрок может реагировать на то, что еще не произошло, или по крайней мере не зная , что именно произошло?

Люди постоянно играют в игры с одновременными ходами и делают свой выбор. Для этого им необходимо найти замену фактическим знаниям или наблюдениям за действиями других игроков. Игроки могут делать слепые догадки и рассчитывать на то, что они окажутся ниспосланными свыше, но, к счастью, существуют более эффективные способы выяснить, что предпринимают другие. Один из них — опыт и наблюдение: если игроки постоянно играют в данную игру или аналогичные игры с подобными игроками, у них может сформироваться неплохое представление об их предпочтениях. В этом случае не самые лучшие варианты выбора вряд ли продержатся долго. Еще один способ — логический процесс мышления через размышления других игроков. Вы ставите себя на их место и размышляете о том, о чем они думают; разумеется, они тоже ставят себя на ваше место и размышляют о том, что думаете вы. На первый взгляд такая логика кажется циклической, однако есть несколько способов вмешаться в этот цикл, и мы покажем их на конкретных примерах в следующих разделах. Равновесие Нэша можно считать кульминацией такого процесса размышлений, в ходе которого каждый игрок правильно определил выбор других игроков.

Посредством наблюдения, или логической дедукции, или какого-либо иного подхода вы как участник игры формируете некоторое представление о выборе участников игр с одновременными ходами. Найти слова для описания этого процесса или его результатов не так уж легко. Речь идет не о предвидении и не о прогнозировании, поскольку действия других игроков выполняются одновременно с вашими и не относятся к будущему. Специалисты по теории игр чаще всего используют термин убеждение. Он не идеален для обозначения происходящего, поскольку вызывает смысловые ассоциации с уверенностью или определенностью в большей степени, чем следовало бы (в главе 7мы допустим возможность того, что убеждения могут быть сопряжены с некоторой неопределенностью), однако ввиду отсутствия более подходящего обозначения нам придется им довольствоваться.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x