Владимир Савельев - Статистика и котики

Тут можно читать онлайн Владимир Савельев - Статистика и котики - бесплатно ознакомительный отрывок. Жанр: Математика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Савельев - Статистика и котики краткое содержание

Статистика и котики - описание и краткое содержание, автор Владимир Савельев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Из этой книги вы узнаете, что такое дисперсия и стандартное отклонение, как найти t-критерий Стьюдента и U-критерий Манна-Уитни, для чего используются регрессионный и факторный анализы, а также многое и многое другое.
И все это — на простых и понятных примерах из жизни милых и пушистых котиков, которые дарят нам множество приятных эмоций.

Статистика и котики - читать онлайн бесплатно ознакомительный отрывок

Статистика и котики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Савельев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Статистика и котики

Владимир Савельев

© Владимир Савельев, 2017

ISBN 978-5-4483-3995-0

Создано в интеллектуальной издательской системе Ridero

Предисловие

ОТ АВТОРА

Мало кто любит статистику.

Одни считают эту науку сухой и безжизненной. Другие боятся и избегают ее. Третьи полагают, что она бесполезна. Но у меня другое мнение на этот счет.

На мой взгляд, статистика обладает своей особой внутренней красотой. Ее можно увидеть, вглядываясь в корреляционную матрицу, рассматривая дендрограммы или интерпретируя результаты факторного анализа. За каждым статистическим коэффициентом стоит маленькое чудо, раскрывающее скрытые закономерности окружающего нас мира.

Но чтобы найти эту красоту, чтобы услышать поэзию, которая пронизывает статистику насквозь, необходимо преодолеть первоначальный страх и недоверие, вызванное внешней сложностью этого предмета.

Для того и написана эта книга. Чтобы показать, что статистика не такая страшная, как о ней думают. И что она вполне может быть такой же милой и пушистой, как котики, которые встретятся вам на страницах этой книги.

ОТ ПАРТНЕРА ИЗДАНИЯ

При слове «статистика» я вспоминаю британских ученых и выборы. Статистика — это многогранный инструмент. Иногда статистикой манипулируют, а можно открывать знания о реальном мире.

Автор написал книгу о базовой статистике в забавном формате. Старая система образования выдает порцию неинтересных и бесполезных знаний. А котики обучают, развлекая.

Когда мы изучаем данные, мы осознаем, что задача — найти соломинку в стоге иголок. И понять, сколько ещё стогов и соломы найдем дальше. Статистика в бизнесе помогает нам экономить деньги и открывать новые рынки. Экономия питает амбиции и потихоньку делает жизнь людей чуточку лучше.

Респект читателям. Респект автору.

Юрий Корженевский,

Центр Исследований и Разработки.

www.rnd.center

Глава 1.

Как выглядят котики

или основы описательной статистики

Котики бывают разные. Есть большие котики, а есть маленькие. Есть котики с длинными хвостами, а есть и вовсе без хвостов. Есть котики с висячими ушками, а есть котики с короткими лапками. Как же нам понять, как выглядит типичный котик?

Для простоты мы возьмем такое котиковое свойство, как размер.

Первый и наиболее очевидный способ — посмотреть, какой размер котиков встречается чаще всего. Такой показатель называется модой .

Второй способ: мы можем упорядочить всех котиков от самого маленького до самого крупного, а затем посмотреть на середину этого ряда. Как правило, там находится котик, который обладает самым типичным размером. И этот размер называется медианой .

Если же посередине находятся сразу два котика (что бывает, когда их четное количество), то, чтобы найти медиану, нужно сложить их размеры и поделить это число пополам.

Последний способ нахождения наиболее типичного котика — это сложить размер всех котиков и поделить на их количество. Полученное число называется средним значением , и оно является очень популярным в современной статистике.

Однако, среднее арифметическое далеко не всегда является лучшим показателем типичности.

Предположим, что среди наших котиков есть один уникум размером со слона. Его присутствие может существенным образом сдвинуть среднее значение в большую сторону, и оно перестанет отражать типичный котиковый размер.

Такой «слоновый» котик, так же как и котик размером с муравья, называется выбросом , и он может существенно исказить наши представления о котиках. И, к большому сожалению, многие статистические критерии, содержащие в своих формулах средние значения, также становятся неадекватными в присутствии «слоновых» котиков.

Чтобы избавиться от таких выбросов, иногда применяют следующий метод: убирают по 5—10% самых больших и самых маленьких котиков и уже от оставшихся считают среднее. Получившийся показатель называют усеченным (или урезанным) средним .

Альтернативный вариант — применять вместо среднего медиану.

Итак, мы рассмотрели основные методы нахождения типичного размера котиков: моду, медиану и средние значения. Все вместе они называются мерами центральной тенденции . Но, кроме типичности, нас довольно часто интересует, насколько разнообразными могут быть котики по размеру. И в этом нам помогают меры изменчивости.

Первая из них — размах — является разностью между самым большим и самым маленьким котиком. Однако, как и среднее арифметическое, эта мера очень чувствительна к выбросам. И, чтобы избежать искажений, мы должны отсечь 25% самых больших и 25% самых маленьких котиков и найти размах для оставшихся. Эта мера называется межквартильным размахом .

Вторая и третья меры изменчивости называются дисперсией и стандартным отклонением . Чтобы разобраться в том, как они устроены, предположим, что мы решили сравнить размер некоторого конкретного котика (назовем его Барсиком) со средним котиковым размером. Разница (а точнее разность) этих размеров называется отклонением . И совершенно очевидно, что чем сильнее Барсик будет отличаться от среднего котика, тем больше будет это самое отклонение.

Логично было бы предположить, что чем больше у нас будет котиков с сильным отклонением, тем более разнообразными будут наши котики по размеру. И, чтобы понять, какое отклонение является для наших котиков наиболее типичным, мы можем просто найти среднее значение по этим отклонениям (т. е. сложить все отклонения и поделить их на количество котиков).

Однако если мы это сделаем, то получим 0. Для недоверчивых привожу доказательство:

Это происходит, поскольку одни отклонения являются положительными (когда Барсик больше среднего), а другие — отрицательными (когда Барсик меньше среднего). Поэтому необходимо избавиться от знака. Сделать это можно двумя способами: либо взять модуль от отклонений, либо возвести их в квадрат, который, как мы помним, всегда положителен. Последнее применяется чаще.

И, если мы найдем среднее от квадратов отклонений, мы получим то, что называется дисперсией . Однако, к большому сожалению, квадрат в этой формуле делает дисперсию очень неудобной для оценки разнообразия котиков: если мы измеряли размер в сантиметрах, то дисперсия имеет размерность в квадратных сантиметрах. Поэтому для удобства использования дисперсию берут под корень, получая по итогу показатель, называемый среднеквадратическим отклонением .

К несчастью, дисперсия и среднеквадратическое отклонение так же неустойчивы к выбросам, как и среднее арифметическое.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Савельев читать все книги автора по порядку

Владимир Савельев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Статистика и котики отзывы


Отзывы читателей о книге Статистика и котики, автор: Владимир Савельев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x