Владимир Савельев - Статистика и котики
- Название:Статистика и котики
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Савельев - Статистика и котики краткое содержание
И все это — на простых и понятных примерах из жизни милых и пушистых котиков, которые дарят нам множество приятных эмоций.
Статистика и котики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из предыдущего раздела мы узнали, как определить, помогает ли то или иное лекарство, если ваш котик заболел. Однако, иногда котики болеют тяжело, и им требуется специальное лечение в особых котиковых клиниках. И, как правило, это лечение подразумевает регулярную сдачу анализов, чтобы отслеживать, становится ли котикам лучше.
Когда таких сдач много (а точнее, больше двух), возникает проблема множественных сравнений, о которой мы не раз говорили выше. Если кратко, то она заключается в том, что, если вы будете попарно сравнивать первый анализ со вторым, второй с третьим и т. д., вероятность того, что вы ошибетесь в своих выводах, будет возрастать.
Разрешить эту проблему, как и в предыдущем случае, может дисперсионный анализ, а точнее, его особая разновидность — дисперсионный анализ с повторными измерениями . Нулевая гипотеза такого анализа состоит в том, что состояние котиков от пробы к пробе не меняется.
В самом простом варианте мы действуем практически так же, как и при обычном дисперсионном анализе: делим дисперсию на части. В тот раз таких частей было две: первая была обусловлена влиянием лечения (межгрупповая дисперсия), а вторая — остальными факторами (внутригрупповая дисперсия).
Однако важным отличием является то, что мы проводим все измерения на одних и тех же котиках. Иными словами, каждый котик измеряется по несколько раз и, соответственно, вносит свой вклад в общую дисперсию. Таким образом, наша дисперсия делится уже на три части: межгрупповую, внутригрупповую и межиндивидуальную .
Критерий Фишера сравнивает между собой только первые два вклада. Соответственно, чем он больше, тем больше причин отклонить нулевую гипотезу. И опять же — если вы отклонили ее, то попарное сравнение нужно будет проводить с помощью специальных post hoc критериев.
У дисперсионного анализа с повторными измерениями есть свой непараметрический брат-близнец — критерий Фридмана , который применяется, если есть выбросы и/или распределение отличается от нормального.
Идея его достаточно проста. Возьмем одного из котиков, у которого взяли три пробы анализов. Каждой из этих проб мы присваиваем ранг, где один — это самый плохой анализ, а три — самый хороший. То же самое мы делаем и с остальными котиками, получая в итоге вот такую таблицу.
Очевидно, что если первая проба у всех котиков самая плохая, а последняя — самая хорошая, то по итогу суммы рангов будут сильно различаться и нулевая гипотеза будет опровергнута. Обратная ситуация — когда суммы рангов во всех пробах одинаковы. Это будет означать, что лечение никак не повлияло на котиков.
Сам же критерий Фридмана, собственно, и позволяет оценить, насколько различаются эти суммы рангов.
НЕМАЛОВАЖНО ЗНАТЬ!
Сложные эксперименты
Некоторое время назад мы рассмотрели, как правильно обрабатывать простые эксперименты с двумя группами и двумя замерами (до и после воздействия). Однако если групп и замеров больше, то наша задача существенно усложняется.
К примеру, мы разделили наших котиков на три группы: первой мы даем лекарство (экспериментальная), второй не даем лекарство (контрольная), а третьей даем пустышку, но говорим им, что дали лекарство ( плацебо-группа ). При этом каждая группа замеряется три раза: в начале, середине и конце лечения.
Для обработки такого исследования нам необходим двухфакторный дисперсионный анализ с повторными измерениями. Подобно обычному двухфакторному ДА такой анализ легче всего интерпретируется с помощью графиков.
В частности из этого графика мы можем увидеть, что котики, принимавшие лекарство, выздоровели, плацебо-котикам стало чуть лучше, а контрольные котики так и продолжают болеть. Правда, возможно, на наши результаты могли повлиять небольшие различия между котиками в начале эксперимента.
К слову, все попарные различия между группами в разные моменты также необходимо проверять с помощью post hoc критериев. В частности — с помощью поправки Бонферрони.
Глава 9.
Как сделать котика счастливым
или основы корреляционного анализа
Безусловно, мы все хотим, чтобы наши котики были счастливы, и поэтому стараемся их постоянно радовать. Однако разных котиков радуют разные вещи: один любит вкусно поесть, другой — поиграть, а третий — поточить когти о любимый хозяйский диван.
Безусловно, существуют и некоторые универсальные вещи, которые радуют большинство котиков, что сильно упрощает нам жизнь. И в этой главе мы рассмотрим один из методов, который позволяет их выявить, — корреляционный анализ .
Предположим, мы решили проверить, связаны ли между собой котиковое счастье и размер ежедневных котиковых порций. Если обильная еда делает котиков счастливыми, то эта взаимосвязь будет отражаться вот таким графиком.
Это так называемая линейная положительная связь . Противоположная (хотя и маловероятная) ситуация — котики являются приверженцами оздоровительных голоданий, и чем больше порции им предлагают, тем более несчастными они становятся.
Такая связь называется линейной отрицательной. Наконец, может получиться так, что котикам вообще не важно, насколько большие у них порции, главное, чтоб еда была вкусной. В этом случае мы наблюдаем отсутствие связи (или нулевую связь ), которая отображается вот таким вот графиком.
Однако в реальной жизни мы очень редко можем наблюдать подобные случаи: как правило, у нас возникает что-нибудь такое.
И поэтому мы нуждаемся в некоторой мере, которая позволила бы нам, во-первых, оценить, насколько сильно связаны между собой счастье и количество доступной еды, а во-вторых, является ли эта связь положительной или отрицательной.
Для вычисления такой меры воспользуемся хитрым способом. Для начала представим, что у нас наблюдается линейная положительная связь. Теперь посчитаем средние арифметические по размеру порций и уровню счастья, а затем возьмем эти показатели в качестве нулевых точек отсчета для нашего графика. После этого мы можем увидеть, что часть котиков более счастлива и получает больше еды, чем в среднем, а остальные — менее счастливы и получают меньше еды, чем средний котик.
Отклонения от среднего по обеим величинам у первых, зажиточных котиков будут положительными числами, а у вторых — отрицательными. Однако если вы возьмете любого из них (назовем его Барсиком) и перемножите его отклонения между собой, то вы получите положительное число. В том числе и потому, что минус на минус дает плюс.
Теперь представим обратную ситуацию: чем больше порции, тем менее счастливыми становятся котики (типичного представителя этой группы мы назовем Мурзиком). В этом случае мы также наблюдаем разделение на две группы: несчастных обжор и счастливых голодающих. Но и у тех, и у других знак одного отклонения будет положительным, а знак другого — отрицательным. А как мы знаем, произведение положительного и отрицательного чисел дает отрицательное число.
Читать дальшеИнтервал:
Закладка: