Владимир Савельев - Статистика и котики

Тут можно читать онлайн Владимир Савельев - Статистика и котики - бесплатно ознакомительный отрывок. Жанр: Математика. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Савельев - Статистика и котики краткое содержание

Статистика и котики - описание и краткое содержание, автор Владимир Савельев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Из этой книги вы узнаете, что такое дисперсия и стандартное отклонение, как найти t-критерий Стьюдента и U-критерий Манна-Уитни, для чего используются регрессионный и факторный анализы, а также многое и многое другое.
И все это — на простых и понятных примерах из жизни милых и пушистых котиков, которые дарят нам множество приятных эмоций.

Статистика и котики - читать онлайн бесплатно ознакомительный отрывок

Статистика и котики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Савельев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Иными словами, знак, который получается при перемножении отклонений, может служить индикатором того, является ли наш котик Барсиком, который становится счастливее при увеличении порций, либо Мурзиком, которому еда отвратительна. Осталось только понять, кто из них делает больший вклад в наблюдаемые данные, что достигается простым суммированием полученных произведений. Если при результате стоит плюс, то победили Барсики и связь положительная. Если минус — то преобладают Мурзики и связь отрицательная. Если же ответ близок к нулю, объявляется боевая ничья и признается отсутствие связи.

Далее с помощью некоторых нехитрых преобразований этот результат приводят в нужную размерность, получив так называемый коэффициент корреляции Пирсона . Он может изменяться в пределах от -1 до 1, где -1 — отрицательная связь, +1 — положительная связь, а 0 — отсутствие всякой связи.

Нулевая гипотеза такого коэффициента — связи нет, альтернативная — связь есть (не важно, положительная или отрицательная). Если коэффициент корреляции достаточно большой по модулю, то нулевая гипотеза отвергается в пользу альтернативной.

Основная проблема r Пирсона как параметрического критерия (т. е. использующего в расчетной формуле средние значения) заключается в том, что он очень не любит выбросы и ненормальные распределения. Поэтому у него есть непараметрический аналог — коэффициент корреляции Спирмена .

Чтобы его вычислить, упорядочим наших котиков от самого счастливого до самого несчастного и присвоим им ранги. Затем мы перераспределим их от самого переедающего до самого голодного и присвоим им ранги уже по этому признаку. Если результаты обоих ранжирований будут совпадать между собой, то мы можем констатировать положительную связь, если же они будут диаметрально противоположными — отрицательную.

Критерий Спирмена мы получаем, применив специальную формулу к нашим рангам, и он интерпретируется аналогично r-критерию Пирсона.

Как правило, проводя корреляционный анализ, мы анализируем сразу несколько переменных и по итогу получаем так называемую корреляционную матрицу. В ней записаны все вычисленные коэффициенты корреляции. Чтобы найти, какие переменные связаны с счастьем, достаточно найти нужный столбик и посмотреть, какие из этих коэффициентов являются значимыми.

Единственное — если вы находите несколько коэффициентов корреляции одновременно, то здесь опять возникает проблема множественных сравнений. Решить ее можно, применив всю ту же поправку Бонферрони: поделив критический p-уровень значимости (0,05) на количество вычисленных критериев (в нашем случае на 3) и сравнив наш p-уровень с получившимся значением (0,017).

К большому сожалению, корреляционный анализ позволяет установить только само наличие связи. Однако сказать, насколько сильно тот или иной фактор влияет на счастье, он не способен. Для этого используются более мощные методы, о которых мы поговорим в следующей главе.

НЕМАЛОВАЖНО ЗНАТЬ!

Корреляция может обмануть

При проведении корреляционного анализа очень важно помнить, что высокий коэффициент корреляции не всегда указывает на характер связи между явлениями. В качестве примера предположим, что мы нашли взаимосвязь между размером котиков и их эмоциональным состоянием. Иными словами — чем больше котик, тем он счастливее.

Тогда теоретически равноправными являются следующие утверждения.

1. Большие котики лучше реализуются в жизни и от того более счастливы.

2. Хорошее расположение духа вызывает более активную выработку гормонов роста, что и приводит к данному эффекту.

3. Существует некоторая третья переменная, которая обусловливает как хорошее настроение, так и разницу в размерах. Например, качество и количество котикового корма.

4. Это просто совпадение.

И чтобы определить, какая из этих гипотез верна, необходимо организовать экспериментальное исследование, о котором шла речь в предыдущих главах.

Глава 10.

Формула счастья

или основы регрессионного анализа

Из предыдущей главы вы узнали, как определить, что делает наших котиков счастливыми. Для этих целей мы использовали корреляционный анализ. Однако коэффициенты корреляции позволяют установить лишь само наличие и выяснить направление этой связи. Определить, насколько сильно изменяется одна переменная под воздействием другой, он не в силах. В качестве иллюстрации приведем пример.

На графиках изображены две линейные положительные взаимосвязи. Коэффициент корреляции в обоих случаях равен +1. Однако очевидно, что каждый подранный диван делает котиков гораздо счастливее, чем очередное увеличение пайков. Эта разница математически описывается с помощью коэффициента b 1. Он определяется как тангенс угла между линией котиков и горизонтальной оси x. Чем больше этот коэффициент, тем сильнее растет уровень счастья от каждой новой порции.

Можно выразиться и так: при увеличении порции мяса на одну единицу котиковое счастье будет возрастать на b 1.

Вторая величина, которая может описывать нашу прямую, называется b 0. Она показывает, насколько счастливы котики, если их совсем не кормить.

По итогу, линейную взаимосвязь между количеством еды и котиковым счастьем можно описать с помощью вот такого несложного уравнения.

Однако, к сожалению, реальные взаимосвязи мало похожи на прямую линию. Чаще они напоминают собой огурец, а в запущенных случаях — авокадо. Но описывать такие вещи довольно сложно, поэтому статистиками был разработан специальный метод, который позволяет подобрать такую прямую, которая смогла бы заменить этот овощ с минимальными потерями данных. Этот метод называется регрессионным анализом, и результатом его применения обычно является уравнение, похожее на то, что обозначено нами выше.

Рассмотрим, как это получается. Предположим, у нас есть прямая, полученная в результате регрессионного анализа, и недалеко от этой прямой обосновался наш старый знакомый — Барсик. На рисунке видно, что Барсик чуть менее счастлив, чем ему положено при своем рационе. Это различие называется регрессионным остатком.

Теперь мысленно подвигаем Барсика относительно регрессионной прямой — при удалении от нее остаток будет увеличиваться, а при приближении — уменьшаться. И, наконец, если Барсик встанет на эту прямую, остаток будет равен нулю. А теперь вспомним, что у нашего Барсика есть компания, и если все наши котики находятся на прямой, то их совокупный остаток тоже будет равен нулю. В то же время при удалении от этой прямой совокупный остаток начнет увеличиваться.

Логика диктует, что, чтобы получить такой совокупный остаток, нам нужно просто сложить индивидуальные остатки котиков (бр-р-р… звучит жутко). Однако, поскольку эти остатки могут быть как положительными, так и отрицательными (некоторые котики ведь могут быть более счастливыми, правда?), на выходе мы можем получить полную белиберду (аналогичная ситуация была, когда мы считали стандартное отклонение). Поэтому, чтобы исключить влияние знаков, мы складываем квадраты остатков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Савельев читать все книги автора по порядку

Владимир Савельев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Статистика и котики отзывы


Отзывы читателей о книге Статистика и котики, автор: Владимир Савельев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x