Рафаель Роузен - Математика для гиков
- Название:Математика для гиков
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2016
- Город:Москва
- ISBN:978-5-17-096852-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рафаель Роузен - Математика для гиков краткое содержание
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.
Математика для гиков - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Математические понятия: стереографическая проекция, проекция Меркатора, проекция Робинсона
Если вы когда-нибудь видели карту на чьей-либо стене или дорожный атлас, то вы смотрели на математику в действии. Как вы уже поняли из главы 1.22, когда читали о Гауссе и пицце, невозможно идеально превратить сферическую форму в двухмерную форму. В результате любая карта Земли – или любой другой планеты или сферического тела – будет иметь искажения. Но каким именно образом информацию на шаре превращают в информацию на листе бумаги? Другими словами, как превратить глобус в карту?
Вот здесь в работу вступает математика. Существуют разные виды карт, и каждая из них отображает Землю по-разному. Каждый вид называется проекцией. Вы, возможно, уже слышали о проекции Меркатора (представлена Герардом Меркатором, фламандским картографом, в 1569 году), которая стала отличным помощником морякам, так как, чтобы добраться из точки А в точку Б, штурману надо было всего лишь начертить линию между этими точками, и он знал точное направление по компасу, которое и приводило его в точку назначения. А если вы когда-либо видели настенную карту мира, опубликованную National Geographic , тогда вы знакомы с проекцией Робинсона. (Карты Робисона были спроектированы так, чтобы в приполярных регионах было меньше искажений, а на картах Меркатора они выглядели куда хуже, чем они есть на самом деле.)
Некоторые карты выполнены в форме круга, и центром обычно являются Северный или Южный полюса. Возможно, вы видели древние карты с такой конфигурацией, где были изображены две круглые карты. Такие карты являются стереографической проекцией. В отличие от некоторых карт, стереографические проекции являются конформными, то есть все углы в них приближены к реальности. (Однако этого нельзя сказать о расстоянии и площади.) Кроме того, окружности на глобусе Земли отображаются как окружности на стереографической карте. Если окружности проходят через точку проекции – центр карты, – тогда они отображаются на карте в виде прямых линий.
В некоторых проекциях, включая проекцию Меркатора, относительные величины континентов искажены. Проекция Галла – Петерса, названная в честь Джеймса Галла и Арно Петерса, пытается скорректировать некоторые искажения, тем самым относительная величина континентов получается более точной. Вы можете помнить знаменитый эпизод «Западного крыла», где эту проекцию поддержала выдуманная Организация картографов за социальное равенство.

1.29. Упаковка M&M’s
Математическое понятие: комбинаторика
Математика может показаться сложной и не связанной с повседневной жизнью, но вы можете столкнуться с ней в самых банальных местах. На самом деле, связь с математикой XVII века можно проследить в отделе сладостей в вашем ближайшем магазине.
В 1611 году Иоганн Кеплер, который стал известен благодаря открытию законов движения планет (см. главу 1.20), высказал гипотезу, согласно которой, если вы используете частицы в форме шара, то нет лучшего способа заполнить пространство, чем сложить шары так, как складывают апельсины на рынке. (Она еще известна как гипотеза Кеплера.) Используя эту технику, которая называется гранецентрированная кубическая упаковка, человек может заполнить примерно 74 % данного пространства. Если шары заполняют банку бессистемно, то они заполняют примерно 64 % пространства.
Теперь перейдем к конфетам. Исследователи обнаружили, что частицы, которые выглядят как M&M’s – приплюснутые шары или сфероиды, – заполняют сосуд так же, как и шары. Если их сложить как апельсины, то они тоже заполняют примерно 74 % объема. Но если их насыпать в сосуд беспорядочно, то они выигрывают у шаров и заполняют 71 % пространства, а это намного больше, чем у шаров. Некоторые люди считают, что сфероиды эффективнее заполняют пространство, нежели шары, так как они могут переворачиваться, пока не попадут в конфигурацию, которая использует больше пространства. Другие фигуры показывают еще лучший результат. Беспорядочно насыпанные эллипсоиды – похожи на мячи для американского футбола или на миндаль в шоколаде, если вам так больше нравится, – могут заполнить до 74 % объема.
Кеплеру так и не удалось доказать свою гипотезу, однако Гаусс смог предоставить неполное доказательство в 1800-х. Последний шаг в доказательстве был сделан в 1990-х, когда математик Томас Хейлс использовал компьютерную программу, которая и помогла доказать гипотезу. Но доказательство оказалось таким длинным – несколько сотен страниц, – что он воспользовался компьютерным алгоритмом, чтобы проверить его!
В 1995 году ярые любители сладости проголосовали за добавление нового цвета в упаковку M&M’s. Выиграл синий цвет, который набрал 54 % голосов. (Всего было отдано 10 миллионов голосов.) Среди финалистов также были розовый и лиловый цвета.

1.30. Танграмы
Математические понятия: фигуры, геометрия
Если вы любите игры, то можете увлекаться танграмами, головоломкой из Китая. Некоторые люди считают, что она возникла тысячи лет назад, хотя первое опубликованное доказательство появилось в 1813 году. Классический набор танграм состоит из семи фигур: двух больших треугольников, среднего треугольника, двух маленьких треугольников, одного квадрата и одного параллелограмма (прямоугольника, у которого две короткие стороны наклонены в одну сторону). Все треугольники являются прямоугольными, то есть один угол в каждом треугольнике равен 90 градусам. Фигуры могут быть сделаны практически из любого материала, включая дерево, пластик, стекло или панцирь черепахи. На самом деле, вы сами можете сделать свой набор танграм с помощью бумаги, карандаша, линейки и ножниц.
Целью игры является сложить семь деталей, чтобы получить сложную фигуру, такую, как человек или животное. (Набор танграм обычно содержит книгу с возможными фигурами.) Детали не должны перекрывать друг друга, и край одной детали должен касаться края как минимум одной другой детали.
Связь между таграмами и математикой очевидна: фигуры пришли из геометрии, раздела математики, который изучает линии, точки и углы. Но танграмы наводят и на более глубокие математические размышления. Некоторые математики задавались вопросом, сколько фигур можно сложить из семи деталей набора танграм. Но в голове у них были вовсе не фигуры овец или моряков. Вместо этого они думали о выпуклых многоугольниках, таких фигурах, как пятиугольники и квадраты, у которых есть три или более сторон и ни одна сторона не наклоняется в сторону центра. Математики обнаружили, что игрок может создать из семи деталей 13 выпуклых многоугольников: два пятиугольника, шесть четырехугольников, один треугольник и четыре шестиугольника. Головоломка простая, но, как и многое в математике, имеет глубокий аспект, который не сразу виден.
Читать дальшеИнтервал:
Закладка: